[1] BELLAR T A, LICHTENBERG J J, KRONER R C. Occurrence of organohalides in chlorinated drinking waters [J]. Journal / American Water Works Association, 1974, 66(12): 703-706. doi: 10.1002/j.1551-8833.1974.tb02129.x
[2] RICHARDSON S D, PLEWA M J, WAGNER E D, et al. Occurrence, genotoxicity, and carcinogenicity of regulated and emerging disinfection by-products in drinking water: A review and roadmap for research [J]. Mutation Research/Reviews in Mutation Research, 2007, 636(1): 178-242.
[3] SUN X, CHEN M, WEI D, et al. Research progress of disinfection and disinfection by-products in China [J]. Journal of Environmental Sciences, 2019, 81: 52-67. doi: 10.1016/j.jes.2019.02.003
[4] HRUDEY S E. Chlorination disinfection by-products, public health risk tradeoffs and me [J]. Water Research, 2009, 43(8): 2057-2092. doi: 10.1016/j.watres.2009.02.011
[5] HRUDEY S E, FAWELL J. 40 years on: what do we know about drinking water disinfection by-products (DBPs) and human health? [J]. Water Supply, 2015, 15(4): 667-674. doi: 10.2166/ws.2015.036
[6] ALEXANDROU L, MEEHAN B J, JONES O A H. Regulated and emerging disinfection by-products in recycled waters [J]. Science of The Total Environment, 2018, 637: 1607-1616.
[7] PLEWA M J, WAGNER E D, MUELLNER M G, et al. Comparative mammalian cell toxicity of N-DBPs and C-DBPs [A]//KARANFIL T, KRASNER S W, XIE Y. Disinfection by-products in drinking water: Occurrence, formation, health effects, and control [C]. Washington; Amer Chemical Soc. 2008, 995: 36-50.
[8] MONTESINOS I, GALLEGO M. Solvent-minimized extraction for determining halonitromethanes and trihalomethanes in water [J]. Journal of Chromatography A, 2012, 1248: 1-8. doi: 10.1016/j.chroma.2012.05.067
[9] DING H H, MENG L P, ZHANG H F, et al. Occurrence, profiling and prioritization of halogenated disinfection by-products in drinking water of China [J]. Environ Sci-Process Impacts, 2013, 15(7): 1424-1429. doi: 10.1039/c3em00110e
[10] GB5749-2006生活饮用水卫生标准[S]. GB5749-2006 Sanitary Standard for Drinking Water[S].
[11] PLEWA M J, WAGNER E D, JAZWIERSKA P, et al. Halonitromethane drinking water disinfection byproducts:   Chemical characterization and mammalian cell cytotoxicity and genotoxicity [J]. Environmental Science & Technology, 2004, 38(1): 62-68.
[12] WAGNER E D, PLEWA M J. CHO cell cytotoxicity and genotoxicity analyses of disinfection by-products: An updated review [J]. Journal of Environmental Sciences, 2017, 58: 64-76. doi: 10.1016/j.jes.2017.04.021
[13] BOND T, TEMPLETON M R, GRAHAM N. Precursors of nitrogenous disinfection by-products in drinking water––A critical review and analysis [J]. Journal of Hazardous Materials, 2012, 235-236: 1-16. doi: 10.1016/j.jhazmat.2012.07.017
[14] ZHOU X, ZHENG L, CHEN S, et al. Factors influencing DBPs occurrence in tap water of Jinhua Region in Zhejiang Province, China [J]. Ecotoxicology and Environmental Safety, 2019, 171: 813-822. doi: 10.1016/j.ecoenv.2018.12.106
[15] KRASNER S W, WEINBERG H S, RICHARDSON S D, et al. Occurrence of a new generation of disinfection byproducts [J]. Environmental Science & Technology, 2006, 40(23): 7175-7185.
[16] BOND T, TEMPLETON M R, MOKHTAR KAMAL N H, et al. Nitrogenous disinfection byproducts in English drinking water supply systems: Occurrence, bromine substitution and correlation analysis [J]. Water Research, 2015, 85: 85-94. doi: 10.1016/j.watres.2015.08.015
[17] LIEW D, LINGE K L, JOLL C A, et al. Determination of halonitromethanes and haloacetamides: An evaluation of sample preservation and analyte stability in drinking water [J]. Journal of Chromatography A, 2012, 1241: 117-122. doi: 10.1016/j.chroma.2012.04.037
[18] 鲁金凤, 王琼, 冯瑛, 等. 典型含氮消毒副产物HNMs的最新研究进展 [J]. 中国给水排水, 2015, 31(4): 28-33. LU J F, WANG Q, FENG Y, et al. Latest research progress of typical nitrogenous disinfection by-products halonitromethanes in drinking water [J]. China Water & Wastewater, 2015, 31(4): 28-33(in Chinese).
[19] 董蕾, 王海燕, 蔡宏铨, 等. 我国六城市饮用水中含氮消毒副产物的现状调查 [J]. 环境与健康杂志, 2016, 33(3): 232-235. DONG L, WANG H Y, CAI H Q, et al. Investigation on nitrogenous disinfection by-products in drinking water in six cities, China [J]. Journal of Environment and Health, 2016, 33(3): 232-235(in Chinese).
[20] SHAN J, HU J, SULE KAPLAN-BEKAROGLU S, et al. The effects of pH, bromide and nitrite on halonitromethane and trihalomethane formation from amino acids and amino sugars [J]. Chemosphere, 2012, 86(4): 323-328. doi: 10.1016/j.chemosphere.2011.09.004
[21] DENG L, LIU B B, LIAO X Y, et al. Formation of trichloronitromethane from aspartic acid during UV/chlorine disinfection [J]. Fresenius Environ Bull, 2019, 28(5): 4297-4303.
[22] DENG L, WEN L J, DAI W J, et al. Impact of tryptophan on the formation of TCNM in the process of UV/chlorine disinfection [J]. Environ Sci Pollut Res, 2018, 25(23): 23227-23235. doi: 10.1007/s11356-018-2397-0
[23] JIA A, WU C, DUAN Y. Precursors and factors affecting formation of haloacetonitriles and chloropicrin during chlor(am)ination of nitrogenous organic compounds in drinking water [J]. Journal of Hazardous Materials, 2016, 308: 411-418. doi: 10.1016/j.jhazmat.2016.01.037
[24] FANG J Y, MA J, YANG X, et al. Formation of carbonaceous and nitrogenous disinfection by-products from the chlorination of Microcystis aeruginosa [J]. Water Research, 2010, 44(6): 1934-1940. doi: 10.1016/j.watres.2009.11.046
[25] LIAO X, LIU J, YANG M, et al. Evaluation of disinfection by-product formation potential (DBPFP) during chlorination of two algae species — Blue-green Microcystis aeruginosa and diatom Cyclotella meneghiniana [J]. Science of The Total Environment, 2015, 532: 540-547. doi: 10.1016/j.scitotenv.2015.06.038
[26] CHEN J X, GAO N Y, LI L, et al. Disinfection by-product formation during chlor(am)ination of algal organic matters (AOM) extracted from Microcystis aeruginosa: Effect of growth phases, AOM and bromide concentration [J]. Environ Sci Pollut Res, 2017, 24(9): 8469-8478. doi: 10.1007/s11356-017-8515-6
[27] GOSLAN E H, SEIGLE C, PURCELL D, et al. Carbonaceous and nitrogenous disinfection by-product formation from algal organic matter [J]. Chemosphere, 2017, 170: 1-9. doi: 10.1016/j.chemosphere.2016.11.148
[28] DENG L, HUANG C H, WANG Y L. Effects of combined UV and chlorine treatment on the formation of trichloronitromethane from amine precursors [J]. Environmental Science & Technology, 2014, 48(5): 2697-2705.
[29] DENG L, LIAO X Y, SHEN J X, et al. Effects of amines on the formation and photodegradation of DCNM under UV/chlorine disinfection [J]. Sci Rep, 2020, 10: 12602. doi: 10.1038/s41598-020-69426-9
[30] YANG X, SHEN Q, GUO W, et al. Precursors and nitrogen origins of trichloronitromethane and dichloroacetonitrile during chlorination/chloramination [J]. Chemosphere, 2012, 88(1): 25-32. doi: 10.1016/j.chemosphere.2012.02.035
[31] HAN C X, ZHAO H Y, DONG M, et al. The formation mechanism of chloropicrin from methylamine during chlorination: a DFT study [J]. Environ Sci-Process Impacts, 2019, 21(4): 761-770. doi: 10.1039/C8EM00581H
[32] MCCURRY D L, QUAY A N, MITCH W A. Ozone promotes chloropicrin formation by oxidizing amines to nitro compounds [J]. Environmental Science & Technology, 2016, 50(3): 1209-1217.
[33] SHI J L, MCCURRY D L. Transformation of n-methylamine drugs during wastewater ozonation: Formation of nitromethane, an efficient precursor to halonitromethanes [J]. Environmental Science & Technology, 2020, 54(4): 2182-2191.
[34] SHAH A D, MITCH W A. Halonitroalkanes, halonitriles, haloamides, and n-nitrosamines: A critical review of nitrogenous disinfection byproduct formation pathways [J]. Environmental Science & Technology, 2012, 46(1): 119-131.
[35] SHAH A D, DOTSON A D, LINDEN K G, et al. Impact of UV disinfection combined with chlorination/chloramination on the formation of halonitromethanes and haloacetonitriles in drinking water [J]. Environmental Science & Technology, 2011, 45(8): 3657-3664.
[36] GUO Z B, LIN Y L, XU B, et al. Factors affecting THM, HAN and HNM formation during UV-chlor(am)ination of drinking water [J]. Chemical Engineering Journal, 2016, 306: 1180-1188. doi: 10.1016/j.cej.2016.08.051
[37] FU J, WANG X, BAI W, et al. Azo compound degradation kinetics and halonitromethane formation kinetics during chlorination [J]. Chemosphere, 2017, 174: 110-116. doi: 10.1016/j.chemosphere.2017.01.098
[38] ZHANG B, XIAN Q, GONG T, et al. DBPs formation and genotoxicity during chlorination of pyrimidines and purines bases [J]. Chemical Engineering Journal, 2017, 307: 884-890. doi: 10.1016/j.cej.2016.09.018
[39] BOND T, HUANG J, TEMPLETON M R, et al. Occurrence and control of nitrogenous disinfection by-products in drinking water – A review [J]. Water Research, 2011, 45(15): 4341-4354. doi: 10.1016/j.watres.2011.05.034
[40] LEE W, WESTERHOFF P, CROUé J P. Dissolved organic nitrogen as a precursor for chloroform, dichloroacetonitrile, n-nitrosodimethylamine, and trichloronitromethane [J]. Environmental Science & Technology, 2007, 41(15): 5485-5490.
[41] HU J, SONG H, ADDISON J W, et al. Halonitromethane formation potentials in drinking waters [J]. Water Research, 2010, 44(1): 105-114. doi: 10.1016/j.watres.2009.09.006
[42] DOTSON A, WESTERHOFF P, KRASNER S W. Nitrogen enriched dissolved organic matter (DOM) isolates and their affinity to form emerging disinfection by-products [J]. Water Science and Technology, 2009, 60(1): 135-143. doi: 10.2166/wst.2009.333
[43] SONG H, ADDISON J W, HU J, et al. Halonitromethanes formation in wastewater treatment plant effluents [J]. Chemosphere, 2010, 79(2): 174-179. doi: 10.1016/j.chemosphere.2010.01.001
[44] TANG Y, LONG X, WU M, et al. Bibliometric review of research trends on disinfection by-products in drinking water during 1975–2018 [J]. Separation and Purification Technology, 2020, 241: 116741. doi: 10.1016/j.seppur.2020.116741
[45] LAU S S, WEI X, BOKENKAMP K, et al. Assessing additivity of cytotoxicity associated with disinfection byproducts in potable reuse and conventional drinking waters [J]. Environmental Science & Technology, 2020, 54(9): 5729-5736.
[46] GILLER S, LE CURIEUX F, GAUTHIER L, et al. Genotoxicity assay of chloral hydrate and chloropicrine [J]. Mutation Research Letters, 1995, 348(4): 147-152. doi: 10.1016/0165-7992(95)90002-0
[47] ZEIGER E, ANDERSON B, HAWORTH S, et al. Salmonella mutagenicity tests: V. Results from the testing of 311 chemicals [J]. Environmental and Molecular Mutagenesis, 1992, 19(21 S): 2-141.
[48] 河合 昭, 後藤 純, 松本 由, 等. 脂肪族および芳香族ニトロ化合物の変異原性工業材料およびその関連物質 [J]. 産業医学, 1987, 29(1): 34-54. AKIRA K, JUN G, YU M, et al. Mutagenic industrial materials of aliphatic and aromatic nitro compounds and related substances [J]. Industrial Medicine, 1987, 29 (1): 34-54 (in Japanese).
[49] KUNDU B, RICHARDSON S D, GRANVILLE C A, et al. Comparative mutagenicity of halomethanes and halonitromethanes in Salmonella TA100: structure–activity analysis and mutation spectra [J]. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 2004, 554(1): 335-350.
[50] KUNDU B, RICHARDSON S D, SWARTZ P D, et al. Mutagenicity in Salmonella of halonitromethanes: a recently recognized class of disinfection by-products in drinking water [J]. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 2004, 562(1): 39-65.
[51] LV L, YU X, XU Q, et al. Induction of bacterial antibiotic resistance by mutagenic halogenated nitrogenous disinfection byproducts [J]. Environmental Pollution, 2015, 205: 291-298. doi: 10.1016/j.envpol.2015.06.026
[52] LIVIAC D, CREUS A, MARCOS R. Mutagenic analysis of six disinfection by-products in the Tk gene of mouse lymphoma cells [J]. Journal of Hazardous Materials, 2011, 190(1): 1045-1052.
[53] CHEN M, WEI D, DU Y. Toxicity-directed identification of disinfection by-products with high risk [J]. Scientia Sinica Chimica, 2018, 48(10): 1207-1216. doi: 10.1360/N032018-00094
[54] MARSà A, CORTéS C, TEIXIDó E, et al. In vitro studies on the tumorigenic potential of the halonitromethanes trichloronitromethane and bromonitromethane [J]. Toxicology in Vitro, 2017, 45: 72-80. doi: 10.1016/j.tiv.2017.08.013
[55] YIN J, WU B, LIU S, et al. Rapid and complete dehalogenation of halonitromethanes in simulated gastrointestinal tract and its influence on toxicity [J]. Chemosphere, 2018, 211: 1147-1155. doi: 10.1016/j.chemosphere.2018.08.039
[56] PLEWA M J, KARGALIOGLU Y, VANKERK D, et al. Mammalian cell cytotoxicity and genotoxicity analysis of drinking water disinfection by-products [J]. Environ Mol Mutagen, 2002, 40(2): 134-142. doi: 10.1002/em.10092
[57] KARGALIOGLU Y, MCMILLAN B J, MINEAR R A, et al. Analysis of the cytotoxicity and mutagenicity of drinking water disinfection by-products in Salmonella typhimurium [J]. Teratogenesis Carcinog Mutagen, 2002, 22(2): 113-128. doi: 10.1002/tcm.10010
[58] LIVIAC D, CREUS A, MARCOS R. Genotoxicity analysis of two halonitromethanes, a novel group of disinfection by-products (DBPs), in human cells treated in vitro [J]. Environmental Research, 2009, 109(3): 232-238. doi: 10.1016/j.envres.2008.12.009
[59] GARCíA-QUISPES W A, CARMONA E R, CREUS A, et al. Genotoxic evaluation of two halonitromethane disinfection by-products in the Drosophila wing-spot test [J]. Chemosphere, 2009, 75(7): 906-909. doi: 10.1016/j.chemosphere.2009.01.007
[60] VILLANUEVA C M, CORDIER S, FONT-RIBERA L, et al. Overview of disinfection by-products and associated health effects [J]. Current Environmental Health Reports, 2015, 2(1): 107-115. doi: 10.1007/s40572-014-0032-x
[61] BULL R J, CROOK J, WHITTAKER M, et al. Therapeutic dose as the point of departure in assessing potential health hazards from drugs in drinking water and recycled municipal wastewater [J]. Regulatory Toxicology and Pharmacology, 2011, 60(1): 1-19. doi: 10.1016/j.yrtph.2009.12.010
[62] YIN J, WU B, ZHANG X-X, et al. Comparative toxicity of chloro- and bromo-nitromethanes in mice based on a metabolomic method [J]. Chemosphere, 2017, 185: 20-28. doi: 10.1016/j.chemosphere.2017.06.116
[63] NAROTSKY M G, KLINEFELTER G R, GOLDMAN J M, et al. Comprehensive assessment of a chlorinated drinking water concentrate in a rat multigenerational reproductive toxicity study [J]. Environmental Science and Technology, 2013, 47(18): 10653-10659.
[64] LI X-F, MITCH W A. Drinking water disinfection byproducts (DBPs) and human health effects: Multidisciplinary challenges and opportunities [J]. Environmental Science & Technology, 2018, 52(4): 1681-1689.
[65] LAN J, RAHMAN S M, GOU N, et al. Genotoxicity assessment of drinking water disinfection byproducts by DNA damage and repair pathway profiling analysis [J]. Environmental Science & Technology, 2018, 52(11): 6565-6575.
[66] 李冬. 新兴消毒副产物毒性识别及毒性作用机制研究 [D]. 西安: 西安理工大学, 2019. LI D. Study on toxicity identification and toxic action mechanism of emerging disinfection by-products [D]. Xi'an : Xi'an University of Technology, 2019 (in Chinese).
[67] BIRBEN E, SAHINER U M, SACKESEN C, et al. Oxidative stress and antioxidant defense [J]. World Allergy Organization Journal, 2012, 5(1): 9-19. doi: 10.1097/WOX.0b013e3182439613
[68] PAE H O, KIM E C, CHUNG H-T. Integrative survival response evoked by heme Oxygenase-1 and heme metabolites [J]. Journal of Clinical Biochemistry and Nutrition, 2008, 42(3): 197-203. doi: 10.3164/jcbn.2008029
[69] PADURARIU M, CIOBICA A, DOBRIN I, et al. Evaluation of antioxidant enzymes activities and lipid peroxidation in schizophrenic patients treated with typical and atypical antipsychotics [J]. Neuroscience Letters, 2010, 479(3): 317-320. doi: 10.1016/j.neulet.2010.05.088
[70] 尹金宝. 饮用水消毒副产物卤代硝基甲烷的胃肠道代谢与致毒机制研究 [D]. 南京: 南京大学, 2017. YIN J B. Study on the gastrointestinal metabolism and toxicity mechanism of halonitromethanes as nitrogenous disinfection by-products [D]. Nanjing : Nanjing University, 2017 (in Chinese).
[71] PESONEN M, HäKKINEN M, RILLA K, et al. Chloropicrin-induced toxic responses in human lung epithelial cells [J]. Toxicology Letters, 2014, 226(2): 236-244. doi: 10.1016/j.toxlet.2014.02.006
[72] YADAV A K, BRACHER A, DORAN S F, et al. Mechanisms and modification of chlorine-induced lung injury in animals [J]. Proc Am Thorac Soc, 2010, 7(4): 278-283. doi: 10.1513/pats.201001-009SM
[73] CASTRO C E, WADE R S, BELSER N O. Biodehalogenation: The metabolism of chloropicrin by Pseudomonas sp [J]. Journal of Agricultural and Food Chemistry, 1983, 31(6): 1184-2287. doi: 10.1021/jf00120a011