[1] 陈海, 孙云娜, 魏东洋. 溴代阻燃剂的环境危害 [J]. 广东化工, 2011, 38(8): 91-92. doi: 10.3969/j.issn.1007-1865.2011.08.045 CHEN H, SUN Y N, WEI D Y. Bromination flame retardants environmental damage [J]. Guangdong Chemical Industry, 2011, 38(8): 91-92(in Chinese). doi: 10.3969/j.issn.1007-1865.2011.08.045
[2] FOURNIER A, FEIDT C, MARCHAND P, et al. Kinetic study of γ-hexabromocyclododecane orally given to laying hens (Gallus domesticus) [J]. Environmental Science and Pollution Research, 2012, 19(2): 440-447. doi: 10.1007/s11356-011-0573-6
[3] DU M M, ZHANG D D, YAN C Z, et al. Developmental toxicity evaluation of three hexabromocyclododecane diastereoisomers on zebrafish embryos [J]. Aquatic Toxicology, 2012, 112/113: 1-10. doi: 10.1016/j.aquatox.2012.01.013
[4] HONG H Z, SHEN R, LIU W X, et al. Developmental toxicity of three hexabromocyclododecane diastereoisomers in embryos of the marine medaka Oryzias melastigma [J]. Marine Pollution Bulletin, 2015, 101(1): 110-118. doi: 10.1016/j.marpolbul.2015.11.009
[5] HUANG H L, WANG D, WAN W N, et al. Hexabromocyclododecanes in soils and plants from a plastic waste treatment area in North China: Occurrence, diastereomer- and enantiomer-specific profiles, and metabolization [J]. Environmental Science and Pollution Research, 2017, 24(27): 21625-21635. doi: 10.1007/s11356-017-9792-9
[6] HUANG H L, ZHANG S Z, LV J, et al. Experimental and theoretical evidence for diastereomer- and enantiomer-specific accumulation and biotransformation of HBCD in maize roots [J]. Environmental Science & Technology, 2016, 50(22): 12205-12213.
[7] FROMME H, BECHER G, HILGER B, et al. Brominated flame retardants - Exposure and risk assessment for the general population [J]. International Journal of Hygiene and Environmental Health, 2016, 219(1): 1-23. doi: 10.1016/j.ijheh.2015.08.004
[8] KOCH C, SCHMIDT-KÖTTERS T, RUPP R, et al. Review of hexabromocyclododecane (HBCD) with a focus on legislation and recent publications concerning toxicokinetics and -dynamics [J]. Environmental Pollution, 2015, 199: 26-34. doi: 10.1016/j.envpol.2015.01.011
[9] ZHAO J P, WANG P, WANG C, et al. Novel brominated flame retardants in West Antarctic atmosphere (2011-2018): Temporal trends, sources and chiral signature [J]. Science of the Total Environment, 2020, 720: 137557. doi: 10.1016/j.scitotenv.2020.137557
[10] MARTEINSON S C, BODNARYK A, FRY M, et al. A r0065view of 1, 2-dibromo-4-(1, 2-dibromoethyl)cyclohexane in the environment and assessment of its persistence, bioaccumulation and toxicity [J]. Environmental Research, 2021, 195: 110497. doi: 10.1016/j.envres.2020.110497
[11] ASNAKE S, PRADHAN A, BANJOP-KHARLYNGDOH J, et al. 1, 2-Dibromo-4-(1, 2 dibromoethyl) cyclohexane (TBECH)-mediated steroid hormone receptor activation and gene regulation in chicken LMH cells [J]. Environmental Toxicology and Chemistry, 2014, 33(4): 891-899. doi: 10.1002/etc.2509
[12] MANKIDY R, RANJAN B, HONARAMOOZ A, et al. Effects of novel brominated flame retardants on steroidogenesis in primary porcine testicular cells [J]. Toxicology Letters, 2014, 224(1): 141-146. doi: 10.1016/j.toxlet.2013.10.018
[13] MARTEINSON S C, LETCHER R J, GRAHAM L, et al. The flame retardant β-1, 2-dibromo-4-(1, 2-dibromoethyl)cyclohexane: Fate, fertility, and reproductive success in American kestrels (Falco sparverius) [J]. Environmental Science & Technology, 2012, 46(15): 8440-8447.
[14] PARK B J, PALACE V, WAUTIER K, et al. Thyroid axis disruption in juvenile brown trout (Salmo trutta) exposed to the flame retardant β-tetrabromoethylcyclohexane (β-TBECH) via the diet [J]. Environmental Science & Technology, 2011, 45(18): 7923-7927.
[15] SAUNDERS D M V, PODAIMA M, WISEMAN S, et al. Effects of the brominated flame retardant TBCO on fecundity and profiles of transcripts of the HPGL-axis in Japanese medaka [J]. Aquatic Toxicology, 2015, 160: 180-187. doi: 10.1016/j.aquatox.2015.01.018
[16] SUN J X, TANG S, PENG H, et al. Combined transcriptomic and proteomic approach to identify toxicity pathways in early life stages of Japanese medaka (Oryzias latipes) exposed to 1, 2, 5, 6-tetrabromocyclooctane (TBCO) [J]. Environmental Science & Technology, 2016, 50(14): 7781-7790.
[17] 时晓丽. 脂环族溴代阻燃剂对 SH-SY5Y 细胞的神经毒性研究 [D]. 北京: 中国科学院大学, 2019. SHI X L. In vitro study on the neurotoxicity of cycloaliphatic brominated flame retardants in SH-SY5Y cells[D]. Beijing: University of Chinese Academy of Sciences, 2019( in Chinese).
[18] FARMAHIN R, GANNON A M, GAGNÉ R, et al. Hepatic transcriptional dose-response analysis of male and female Fischer rats exposed to hexabromocyclododecane [J]. Food and Chemical Toxicology, 2019, 133: 110262. doi: 10.1016/j.fct.2018.12.032
[19] GENG J Y, HAN M, YANG X, et al. Different biotransformation of three hexabromocyclododecane diastereoisomers by Pseudomonas sp. under aerobic conditions [J]. Chemical Engineering Journal, 2019, 374: 870-879. doi: 10.1016/j.cej.2019.05.232
[20] HUANG H L, WANG D, WEN B, et al. Roles of maize cytochrome P450 (CYP) enzymes in stereo-selective metabolism of hexabromocyclododecanes (HBCDs) as evidenced by in vitro degradation, biological response and in silico studies [J]. Science of the Total Environment, 2019, 656: 364-372. doi: 10.1016/j.scitotenv.2018.11.351
[21] NGUYEN K H, ABOU-ELWAFA ABDALLAH M, MOEHRING T, et al. Biotransformation of the flame retardant 1, 2-dibromo-4-(1, 2-dibromoethyl)cyclohexane (TBECH) in vitro by human liver microsomes [J]. Environmental Science & Technology, 2017, 51(18): 10511-10518.
[22] WANG X, WEI L, WANG Y, et al. Evaluation of development, locomotor behavior, oxidative stress, immune responses and apoptosis in developing zebrafish (Danio rerio) exposed to TBECH (tetrabromoethylcyclohexane) [J]. Comparative Biochemistry and Physiology Part C:Toxicology & Pharmacology, 2019, 217: 106-113.
[23] HEEB N, SCHWEIZER W B, HAAG R, et al. Hexabromocyclododecanes: From Smart Molecules to Persistent Pollutants [J]. Chimia, 2008, 62(11): 936-936. doi: 10.2533/chimia.2008.936
[24] MARVIN C H, TOMY G T, ARMITAGE J M, et al. Hexabromocyclododecane: Current understanding of chemistry, environmental fate and toxicology and implications for global management [J]. Environmental Science & Technology, 2011, 45(20): 8613-8623.
[25] SCHENKER U, MACLEOD M, SCHERINGER M, et al. Improving data quality for environmental fate models:   A least-squares adjustment procedure for harmonizing physicochemical properties of organic compounds [J]. Environmental Science & Technology, 2005, 39(21): 8434-8441.
[26] HOWARD P H, MUIR D C G. Identifying new persistent and bioaccumulative organics among chemicals in commerce [J]. Environmental Science & Technology, 2010, 44(7): 2277-2285.
[27] ARSENAULT G, LOUGH A, MARVIN C, et al. Structure characterization and thermal stabilities of the isomers of the brominated flame retardant 1, 2-dibromo-4-(1, 2-dibromoethyl)cyclohexane [J]. Chemosphere, 2008, 72(8): 1163-1170. doi: 10.1016/j.chemosphere.2008.03.044
[28] RIDDELL N, ARSENAULT G, KLEIN J, et al. Structural characterization and thermal stabilities of the isomers of the brominated flame retardant 1, 2, 5, 6-tetrabromocyclooctane (TBCO) [J]. Chemosphere, 2009, 74(11): 1538-1543. doi: 10.1016/j.chemosphere.2008.11.026
[29] BERGMAN Å, HEINDEL J, JOBLING S, et al. State-of-the-science of endocrine disrupting chemicals, 2012 [J]. Toxicology Letters, 2012, 211: S3.
[30] ZHU H K, ZHANG K, SUN H W, et al. Spatial and temporal distributions of hexabromocyclododecanes in the vicinity of an expanded polystyrene material manufacturing plant in Tianjin, China [J]. Environmental Pollution, 2017, 222: 338-347. doi: 10.1016/j.envpol.2016.12.029
[31] RUAN Y F, ZHANG K, LAM J C W, et al. Stereoisomer-specific occurrence, distribution, and fate of chiral brominated flame retardants in different wastewater treatment systems in Hong Kong [J]. Journal of Hazardous Materials, 2019, 374: 211-218. doi: 10.1016/j.jhazmat.2019.04.041
[32] ZHANG Y Q, LU Y L, WANG P, et al. Transport of Hexabromocyclododecane (HBCD) into the soil, water and sediment from a large producer in China [J]. Science of the Total Environment, 2018, 610/611: 94-100. doi: 10.1016/j.scitotenv.2017.08.039
[33] OKONSKI K, MELYMUK L, KOHOUTEK J, et al. Hexabromocyclododecane: Concentrations and isomer profiles from sources to environmental sinks [J]. Environmental Science and Pollution Research, 2018, 25(36): 36624-36635. doi: 10.1007/s11356-018-3381-4
[34] DRAGE D S, NEWTON S, de WIT C A, et al. Concentrations of legacy and emerging flame retardants in air and soil on a transect in the UK West Midlands [J]. Chemosphere, 2016, 148: 195-203. doi: 10.1016/j.chemosphere.2016.01.034
[35] RAUERT C, SCHUSTER J K, ENG A, et al. Global atmospheric concentrations of brominated and chlorinated flame retardants and organophosphate esters [J]. Environmental Science & Technology, 2018, 52(5): 2777-2789.
[36] NEWTON S, SELLSTRÖM U, de WIT C A. Emerging flame retardants, PBDEs, and HBCDDs in indoor and outdoor media in Stockholm, Sweden [J]. Environmental Science & Technology, 2015, 49(5): 2912-2920.
[37] LI Y, ZHU X H, WANG L X, et al. Levels and gas-particle partitioning of hexabromocyclododecanes in the urban air of Dalian, China [J]. Environmental Science and Pollution Research, 2018, 25(27): 27514-27523. doi: 10.1007/s11356-018-2793-5
[38] ZHU Y S, YANG W D, LI X W, et al. Airborne particle-bound brominated flame retardants: Levels, size distribution and indoor-outdoor exchange [J]. Environmental Pollution, 2018, 233: 1104-1112. doi: 10.1016/j.envpol.2017.10.013
[39] LI H R, MO L G, YU Z Q, et al. Levels, isomer profiles and chiral signatures of particle-bound hexabromocyclododecanes in ambient air around Shanghai, China [J]. Environmental Pollution, 2012, 165: 140-146. doi: 10.1016/j.envpol.2012.02.015
[40] LEE S, MOON H B. Multi-matrix distribution and contamination profiles of HBCDD isomers in a man-made saltwater lake near industrial complexes with high flame retardant consumption in Korea [J]. Marine Pollution Bulletin, 2021, 172: 112812. doi: 10.1016/j.marpolbul.2021.112812
[41] ZHANG Y W, RUAN Y F, SUN H W, et al. Hexabromocyclododecanes in surface sediments and a sediment core from Rivers and Harbor in the northern Chinese city of Tianjin [J]. Chemosphere, 2013, 90(5): 1610-1616. doi: 10.1016/j.chemosphere.2012.08.037
[42] LI H R, la GUARDIA M J, LIU H H, et al. Brominated and organophosphate flame retardants along a sediment transect encompassing the Guiyu, China e-waste recycling zone [J]. Science of the Total Environment, 2019, 646: 58-67. doi: 10.1016/j.scitotenv.2018.07.276
[43] OH J K, KOTANI K, MANAGAKI S, et al. Levels and distribution of hexabromocyclododecane and its lower brominated derivative in Japanese riverine environment [J]. Chemosphere, 2014, 109: 157-163. doi: 10.1016/j.chemosphere.2014.01.074
[44] LI H H, SHANG H T, WANG P, et al. Occurrence and distribution of hexabromocyclododecane in sediments from seven major river drainage basins in China [J]. Journal of Environmental Sciences, 2013, 25(1): 69-76. doi: 10.1016/S1001-0742(12)60010-2
[45] FENG A H, CHEN S J, CHEN M Y, et al. Hexabromocyclododecane (HBCD) and tetrabromobisphenol A (TBBPA) in riverine and estuarine sediments of the Pearl River Delta in Southern China, with emphasis on spatial variability in diastereoisomer- and enantiomer-specific distribution of HBCD [J]. Marine Pollution Bulletin, 2012, 64(5): 919-925. doi: 10.1016/j.marpolbul.2012.03.008
[46] HARRAD S, ABDALLAH M A E, COVACI A. Causes of variability in concentrations and diastereomer patterns of hexabromocyclododecanes in indoor dust [J]. Environment International, 2009, 35(3): 573-579. doi: 10.1016/j.envint.2008.10.005
[47] JO H, SON M H, SEO S H, et al. Matrix-specific distribution and diastereomeric profiles of hexabromocyclododecane (HBCD) in a multimedia environment: Air, soil, sludge, sediment, and fish [J]. Environmental Pollution, 2017, 226: 515-522. doi: 10.1016/j.envpol.2017.04.093
[48] TANG J F, FENG J Y, LI X H, et al. Levels of flame retardants HBCD, TBBPA and TBC in surface soils from an industrialized region of East China [J]. Environmental Science:Processes & Impacts, 2014, 16(5): 1015-1021.
[49] GAO S T, WANG J Z, YU Z Q, et al. Hexabromocyclododecanes in surface soils from E-waste recycling areas and industrial areas in South China: Concentrations, diastereoisomer- and enantiomer-specific profiles, and inventory [J]. Environmental Science & Technology, 2011, 45(6): 2093-2099.
[50] CAO X H, LU Y L, ZHANG Y Q, et al. An overview of hexabromocyclododecane (HBCDs) in environmental media with focus on their potential risk and management in China [J]. Environmental Pollution, 2018, 236: 283-295. doi: 10.1016/j.envpol.2018.01.040
[51] LI H H, ZHANG Q H, WANG P, et al. Levels and distribution of hexabromocyclododecane (HBCD) in environmental samples near manufacturing facilities in Laizhou Bay area, East China [J]. Journal of Environmental Monitoring, 2012, 14(10): 2591-2597. doi: 10.1039/c2em30231d
[52] YI S, LIU J G, JIN J, et al. Assessment of the occupational and environmental risks of hexabromocyclododecane (HBCD) in China [J]. Chemosphere, 2016, 150: 431-437. doi: 10.1016/j.chemosphere.2016.01.047
[53] GAUTHIER L T, POTTER D, HEBERT C E, et al. Temporal trends and spatial distribution of non-polybrominated diphenyl ether flame retardants in the eggs of colonial populations of great lakes herring gulls [J]. Environmental Science & Technology, 2009, 43(2): 312-317.
[54] SHOEIB M, AHRENS L, JANTUNEN L, et al. Concentrations in air of organobromine, organochlorine and organophosphate flame retardants in Toronto, Canada [J]. Atmospheric Environment, 2014, 99: 140-147.
[55] RIDDELL N, ARSENAULT G, LOUGH A, et al. The three-dimensional structural characterization of hexachlorocyclopentenyl-dibromocyclooctane (HCDBCO) [J]. Chemosphere, 2008, 73(4): 479-483. doi: 10.1016/j.chemosphere.2008.06.047
[56] TAO F, ABDALLAH M A E, HARRAD S. Emerging and legacy flame retardants in UK indoor air and dust: Evidence for replacement of PBDEs by emerging flame retardants? [J]. Environmental Science & Technology, 2016, 50(23): 13052-13061.
[57] SIMONETTI G, di FILIPPO P, RICCARDI C, et al. Occurrence of halogenated pollutants in domestic and occupational indoor dust [J]. International Journal of Environmental Research and Public Health, 2020, 17(11): 3813. doi: 10.3390/ijerph17113813
[58] BROWN F R, WHITEHEAD T P, PARK J S, et al. Levels of non-polybrominated diphenyl ether brominated flame retardants in residential house dust samples and fire station dust samples in California [J]. Environmental Research, 2014, 135: 9-14. doi: 10.1016/j.envres.2014.08.022
[59] MELYMUK L, BOHLIN-NIZZETTO P, KUKUČKA P, et al. Seasonality and indoor/outdoor relationships of flame retardants and PCBs in residential air [J]. Environmental Pollution, 2016, 218: 392-401. doi: 10.1016/j.envpol.2016.07.018
[60] PERSSON J, WANG T, HAGBERG J. Temporal trends of decabromodiphenyl ether and emerging brominated flame retardants in dust, air and window surfaces of newly built low-energy preschools [J]. Indoor Air, 2019, 29(2): 263-275. doi: 10.1111/ina.12528
[61] HONG W J, JIA H L, DING Y S, et al. Polychlorinated biphenyls (PCBs) and halogenated flame retardants (HFRs) in multi-matrices from an electronic waste (e-waste) recycling site in Northern China [J]. Journal of Material Cycles and Waste Management, 2018, 20(1): 80-90. doi: 10.1007/s10163-016-0550-8
[62] MUIR D, HOWARD P H, MEYLAN W. Screening chemicals in commerce to identify possible persistent and bioaccumulative organohalogen chemicals: new results [J]. Organohalogen Compounds, 2007, 69: 1053-1056.
[63] TOMY G T, PLESKACH K, ARSENAULT G, et al. Identification of the novel cycloaliphatic brominated flame retardant 1, 2-dibromo-4-(1, 2-dibromoethyl)cyclohexane in Canadian arctic beluga (Delphinapterus leucas) [J]. Environmental Science & Technology, 2008, 42(2): 543-549.
[64] NEWTON S, BIDLEMAN T, BERGKNUT M, et al. Atmospheric deposition of persistent organic pollutants and chemicals of emerging concern at two sites in northern Sweden [J]. Environmental Science. Processes & Impacts, 2014, 16(2): 298-305.
[65] CARLSSON P, VRANA B, SOBOTKA J, et al. New brominated flame retardants and dechlorane plus in the Arctic: Local sources and bioaccumulation potential in marine benthos [J]. Chemosphere, 2018, 211: 1193-1202. doi: 10.1016/j.chemosphere.2018.07.158
[66] FERNIE K J, CHABOT D, CHAMPOUX L, et al. Spatiotemporal patterns and relationships among the diet, biochemistry, and exposure to flame retardants in an apex avian predator, the peregrine falcon [J]. Environmental Research, 2017, 158: 43-53. doi: 10.1016/j.envres.2017.05.035
[67] RUAN Y F, ZHANG X H, QIU J W, et al. Stereoisomer-specific trophodynamics of the chiral brominated flame retardants HBCD and TBECH in a marine food web, with implications for human exposure [J]. Environmental Science & Technology, 2018, 52(15): 8183-8193.
[68] WANG Q, KELLY B C. Occurrence and distribution of halogenated flame retardants in an urban watershed: Comparison to polychlorinated biphenyls and organochlorine pesticides [J]. Environmental Pollution, 2017, 231: 252-261. doi: 10.1016/j.envpol.2017.07.092
[69] SÜHRING R, BUSCH F, FRICKE N, et al. Distribution of brominated flame retardants and dechloranes between sediments and benthic fish—A comparison of a freshwater and marine habitat [J]. Science of the Total Environment, 2016, 542: 578-585. doi: 10.1016/j.scitotenv.2015.10.085
[70] RUAN Y F, LAM J C W, ZHANG X H, et al. Temporal changes and stereoisomeric compositions of 1, 2, 5, 6, 9, 10-hexabromocyclododecane and 1, 2-dibromo-4-(1, 2-dibromoethyl)cyclohexane in marine mammals from the South China sea [J]. Environmental Science & Technology, 2018, 52(5): 2517-2526.
[71] ZHANG Y Q, LU Y L, WANG P, et al. Biomagnification of Hexabromocyclododecane (HBCD) in a coastal ecosystem near a large producer in China: Human exposure implication through food web transfer [J]. Science of the Total Environment, 2018, 624: 1213-1220. doi: 10.1016/j.scitotenv.2017.12.153
[72] KIM J T, CHOI Y J, BARGHI M, et al. Occurrence, distribution, and bioaccumulation of new and legacy persistent organic pollutants in an ecosystem on King George Island, maritime Antarctica [J]. Journal of Hazardous Materials, 2021, 405: 124141. doi: 10.1016/j.jhazmat.2020.124141
[73] WANG W T, CHOO G, CHO H S, et al. The occurrence and distribution of hexabromocyclododecanes in freshwater systems, focusing on tissue-specific bioaccumulation in crucian carp [J]. Science of the Total Environment, 2018, 635: 470-478. doi: 10.1016/j.scitotenv.2018.03.262
[74] TANG B, ZENG Y H, LUO X J, et al. Bioaccumulative characteristics of tetrabromobisphenol A and hexabromocyclododecanes in multi-tissues of prey and predator fish from an e-waste site, South China [J]. Environmental Science and Pollution Research, 2015, 22(16): 12011-12017. doi: 10.1007/s11356-015-4463-1
[75] ZHU C F, WANG P, LI Y M, et al. Trophic transfer of hexabromocyclododecane in the terrestrial and aquatic food webs from an e-waste dismantling region in East China [J]. Environmental Science. Processes & Impacts, 2017, 19(2): 154-160.
[76] ZHANG Y W, SUN H W, RUAN Y F. Enantiomer-specific accumulation, depuration, metabolization and isomerization of hexabromocyclododecane (HBCD) diastereomers in mirror carp from water [J]. Journal of Hazardous Materials, 2014, 264: 8-15. doi: 10.1016/j.jhazmat.2013.10.062
[77] ZHANG Y W, SUN H W, LIU F, et al. Hexabromocyclododecanes in limnic and marine organisms and terrestrial plants from Tianjin, China: Diastereomer- and enantiomer-specific profiles, biomagnification, and human exposure [J]. Chemosphere, 2013, 93(8): 1561-1568. doi: 10.1016/j.chemosphere.2013.08.004
[78] LI H W, HU Y X, SUN Y X, et al. Bioaccumulation and translocation of tetrabromobisphenol A and hexabromocyclododecanes in mangrove plants from a national nature reserve of Shenzhen City, South China [J]. Environment International, 2019, 129: 239-246. doi: 10.1016/j.envint.2019.05.034
[79] ZHU H K, SUN H W, YAO Y M, et al. Legacy and alternative brominated flame retardants in outdoor dust and pine needles in mainland China: Spatial trends, dust-plant partitioning and human exposure [J]. Environmental Pollution, 2018, 243: 758-765. doi: 10.1016/j.envpol.2018.08.097
[80] KIM J T, CHOI Y J, BARGHI M, et al. Occurrence and distribution of old and new halogenated flame retardants in mosses and lichens from the South Shetland Islands, Antarctica [J]. Environmental Pollution, 2018, 235: 302-311. doi: 10.1016/j.envpol.2017.12.080
[81] ZHU H K, SUN H W, ZHANG Y W, et al. Uptake pathway, translocation, and isomerization of hexabromocyclododecane diastereoisomers by wheat in closed Chambers [J]. Environmental Science & Technology, 2016, 50(5): 2652-2659.
[82] ZHU H K, SUN H W, YAO Y M, et al. Fate and adverse effects of hexabromocyclododecane diastereoisomers (HBCDDs) in a soil-ryegrass pot system [J]. Chemosphere, 2017, 184: 452-459. doi: 10.1016/j.chemosphere.2017.05.166
[83] LÜ H, MA X J, HUANG X J, et al. Distribution, diastereomer-specific accumulation and associated health risks of hexabromocyclododecanes (HBCDs) in soil-vegetable system of the Pearl River Delta region, South China [J]. Journal of Environmental Management, 2019, 248: 109321. doi: 10.1016/j.jenvman.2019.109321
[84] LI B, YAO T Q, SUN H W, et al. Diastereomer- and enantiomer-specific accumulation, depuration, bioisomerization, and metabolism of hexabromocyclododecanes (HBCDs) in two ecologically different species of earthworms [J]. Science of the Total Environment, 2016, 542: 427-434. doi: 10.1016/j.scitotenv.2015.10.100
[85] GUO Z, ZHANG L J, LIU X Y, et al. The enrichment and purification of hexabromocyclododecanes and its effects on thyroid in zebrafish [J]. Ecotoxicology and Environmental Safety, 2019, 185: 109690. doi: 10.1016/j.ecoenv.2019.109690
[86] XIA W, WANG J M, YANG H, et al. Bioaccumulation and distribution of hexabromocyclododecane isomers in duck tissues [J]. Bulletin of Environmental Contamination and Toxicology, 2018, 100(6): 754-759. doi: 10.1007/s00128-018-2342-4
[87] DU M M, LIN L F, YAN C Z, et al. Diastereoisomer- and enantiomer-specific accumulation, depuration, and bioisomerization of hexabromocyclododecanes in zebrafish (Danio rerio) [J]. Environmental Science & Technology, 2012, 46(20): 11040-11046.
[88] HAKK H. Comparative metabolism studies of hexabromocyclododecane (HBCD) diastereomers in male rats following a single oral dose [J]. Environmental Science & Technology, 2016, 50(1): 89-96.
[89] LAW K, PALACE V P, HALLDORSON T, et al. Dietary accumulation of hexabromocyclododecane diastereoisomers in juvenile rainbow trout (Oncorhynchus mykiss) Ⅰ: Bioaccumulation parameters and evidence of bioisomerization [J]. Environmental Toxicology and Chemistry, 2006, 25(7): 1757-1761. doi: 10.1897/05-445R.1
[90] LI B, CHEN H, SUN H W, et al. Distribution, isomerization and enantiomer selectivity of hexabromocyclododecane (HBCD) diastereoisomers in different tissue and subcellular fractions of earthworms [J]. Ecotoxicology and Environmental Safety, 2017, 139: 326-334. doi: 10.1016/j.ecoenv.2017.01.004
[91] SHIN E S, JEONG Y, BARGHI M, et al. Internal distribution and fate of persistent organic contaminants (PCDD/Fs, DL-PCBs, HBCDs, TBBPA, and PFASs) in a Bos Taurus [J]. Environmental Pollution, 2020, 267: 115306. doi: 10.1016/j.envpol.2020.115306
[92] SU G Y, MCGOLDRICK D J, CLARK M G, et al. Isomer-specific hexabromocyclododecane (HBCDD) levels in top predator fish from across Canada and 36-year temporal trends in lake Ontario [J]. Environmental Science & Technology, 2018, 52(11): 6197-6207.
[93] HONG H Z, LV D, LIU W X, et al. Toxicity and bioaccumulation of three hexabromocyclododecane diastereoisomers in the marine copepod Tigriopus japonicas [J]. Aquatic Toxicology, 2017, 188: 1-9. doi: 10.1016/j.aquatox.2017.04.010
[94] ZHENG G M, WAN Y, SHI S N, et al. Trophodynamics of emerging brominated flame retardants in the aquatic food web of lake Taihu: Relationship with organism metabolism across trophic levels [J]. Environmental Science & Technology, 2018, 52(8): 4632-4640.
[95] CHEN D, LETCHER R J, BURGESS N M, et al. Flame retardants in eggs of four gull species (Laridae) from breeding sites spanning Atlantic to Pacific Canada [J]. Environmental Pollution, 2012, 168: 1-9. doi: 10.1016/j.envpol.2012.03.040
[96] SU G Y, LETCHER R J, MOORE J N, et al. Spatial and temporal comparisons of legacy and emerging flame retardants in herring gull eggs from colonies spanning the Laurentian Great Lakes of Canada and United States [J]. Environmental Research, 2015, 142: 720-730. doi: 10.1016/j.envres.2015.08.018
[97] TAO F, ABOU-ELWAFA ABDALLAH M, ASHWORTH D C, et al. Emerging and legacy flame retardants in UK human milk and food suggest slow response to restrictions on use of PBDEs and HBCDD [J]. Environment International, 2017, 105: 95-104. doi: 10.1016/j.envint.2017.05.010
[98] KURT-KARAKUS P B, MUIR D C G, de JOURDAN B, et al. Bioaccumulation of selected halogenated organic flame retardants in lake Ontario [J]. Environmental Toxicology and Chemistry, 2019, 38(6): 1198-1210. doi: 10.1002/etc.4413
[99] FISK P R, GIRLING A E, WILDEY R J. Prioritisation of flame retardants for environmental risk assessment [R]. Environment Agency, United Kingdom, 2003.
[100] ESSLINGER S, BECKER R, MÜLLER-BELECKE A, et al. HBCD stereoisomer pattern in mirror carps following dietary exposure to pure γ-HBCD enantiomers [J]. Journal of Agricultural and Food Chemistry, 2010, 58(17): 9705-9710. doi: 10.1021/jf101469q
[101] GANNON A M, NUNNIKHOVEN A, LISTON V, et al. Rat strain response differences upon exposure to technical or alpha hexabromocyclododecane [J]. Food and Chemical Toxicology, 2019, 130: 284-307. doi: 10.1016/j.fct.2019.05.003
[102] SZABO D T, DILIBERTO J J, HAKK H, et al. Toxicokinetics of the flame retardant hexabromocyclododecane gamma: Effect of dose, timing, route, repeated exposure, and metabolism [J]. Toxicological Sciences, 2010, 117(2): 282-293. doi: 10.1093/toxsci/kfq183
[103] RATEL J, PLANCHE C, MERCIER F, et al. Liver volatolomics to reveal poultry exposure to γ-hexabromocyclododecane (HBCD) [J]. Chemosphere, 2017, 189: 634-642. doi: 10.1016/j.chemosphere.2017.09.074
[104] SANDERS J M, KNUDSEN G A, BIRNBAUM L S. The fate of β-hexabromocyclododecane in female C57BL/6 mice [J]. Toxicological Sciences, 2013, 134(2): 251-257. doi: 10.1093/toxsci/kft121
[105] ABDALLAH M A E, UCHEA C, CHIPMAN J K, et al. Enantioselective biotransformation of hexabromocyclododecane by in vitro rat and trout hepatic sub-cellular fractions [J]. Environmental Science & Technology, 2014, 48(5): 2732-2740.
[106] ZHENG X B, ERRATICO C, ABDALLAH M A E, et al. In vitro metabolism of BDE-47, BDE-99, and α-, β-, γ-HBCD isomers by chicken liver microsomes [J]. Environmental Research, 2015, 143: 221-228. doi: 10.1016/j.envres.2015.10.023
[107] ZHENG X B, ERRATICO C, LUO X J, et al. Oxidative metabolism of BDE-47, BDE-99, and HBCDs by cat liver microsomes: Implications of cats as sentinel species to monitor human exposure to environmental pollutants [J]. Chemosphere, 2016, 151: 30-36. doi: 10.1016/j.chemosphere.2016.02.054
[108] ESSLINGER S, BECKER R, MAUL R, et al. Hexabromocyclododecane enantiomers: Microsomal degradation and patterns of hydroxylated metabolites [J]. Environmental Science & Technology, 2011, 45(9): 3938-3944.
[109] BRANDSMA S H, van der VEN L T M, de BOER J, et al. Identification of hydroxylated metabolites of hexabromocyclododecane in wildlife and 28-days exposed Wistar rats [J]. Environmental Science & Technology, 2009, 43(15): 6058-6063.
[110] HAKK H, SZABO D T, HUWE J, et al. Novel and distinct metabolites identified following a single oral dose of α- or γ-hexabromocyclododecane in mice [J]. Environmental Science & Technology, 2012, 46(24): 13494-13503.
[111] SZABO D T, PATHMASIRI W, SUMNER S, et al. Serum metabolomic profiles in neonatal mice following oral brominated flame retardant exposures to hexabromocyclododecane (HBCD) alpha, gamma, and commercial mixture [J]. Environmental Health Perspectives, 2017, 125(4): 651-659. doi: 10.1289/EHP242
[112] CHANG T H, WANG R, PENG Y H, et al. Biodegradation of hexabromocyclododecane by Rhodopseudomonas palustris YSC3 strain: A free-living nitrogen-fixing bacterium isolated in Taiwan [J]. Chemosphere, 2020, 246: 125621. doi: 10.1016/j.chemosphere.2019.125621
[113] HEEB N V, GRUBELNIK A, GEUEKE B, et al. Biotransformation of hexabromocyclododecanes with hexachlorocyclohexane-transforming Sphingobium chinhatense strain IP26 [J]. Chemosphere, 2017, 182: 491-500. doi: 10.1016/j.chemosphere.2017.05.047
[114] HUANG L, WANG W W, SHAH S B, et al. The HBCDs biodegradation using a Pseudomonas strain and its application in soil phytoremediation [J]. Journal of Hazardous Materials, 2019, 380: 120833. doi: 10.1016/j.jhazmat.2019.120833
[115] SHAH S B, HUANG L, HU H Y, et al. Characterization of environmentally friendly degradation of hexabromocyclododecane by a Bacillus strain HBCD-sjtu [J]. International Biodeterioration & Biodegradation, 2019, 145: 104794.
[116] WANG R, LIN C Y, CHEN S H, et al. Using high-throughput transcriptome sequencing to investigate the biotransformation mechanism of hexabromocyclododecane with Rhodopseudomonas palustris in water [J]. Science of the Total Environment, 2019, 692: 249-258. doi: 10.1016/j.scitotenv.2019.07.140
[117] YANG K L, ZHONG Q, QIN H M, et al. Molecular response mechanism in Escherichia coli under hexabromocyclododecane stress [J]. Science of the Total Environment, 2020, 708: 135199. doi: 10.1016/j.scitotenv.2019.135199
[118] ZHONG Y, WANG H L, YU Z Q, et al. Diastereoisomer-specific biotransformation of hexabromocyclododecanes by a mixed culture containing Dehalococcoides mccartyi strain 195 [J]. Frontiers in Microbiology, 2018, 9: 1713. doi: 10.3389/fmicb.2018.01713
[119] ZHANG Q, YAO Y M, WANG Y, et al. Plant accumulation and transformation of brominated and organophosphate flame retardants: A review [J]. Environmental Pollution, 2021, 288: 117742. doi: 10.1016/j.envpol.2021.117742
[120] HEEB N V, MAZENAUER M, WYSS S, et al. Kinetics and stereochemistry of LinB-catalyzed δ-HBCD transformation: Comparison of in vitro and in silico results [J]. Chemosphere, 2018, 207: 118-129. doi: 10.1016/j.chemosphere.2018.05.057
[121] NYHOLM J R, NORMAN A, NORRGREN L, et al. Uptake and biotransformation of structurally diverse brominated flame retardants in zebrafish (Danio rerio) after dietary exposure [J]. Environmental Toxicology and Chemistry, 2009, 28(5): 1035-1042. doi: 10.1897/08-302.1
[122] GEMMILL B, PLESKACH K, PETERS L, et al. Toxicokinetics of tetrabromoethylcyclohexane (TBECH) in juvenile brown trout (Salmo trutta) and effects on plasma sex hormones [J]. Aquatic Toxicology, 2011, 101(2): 309-317. doi: 10.1016/j.aquatox.2010.11.003
[123] CHU S G, GAUTHIER L T, LETCHER R J. Alpha and beta isomers of tetrabromoethylcyclohexane (TBECH) flame retardant: Depletion and metabolite formation in vitro using a model rat microsomal assay [J]. Environmental Science & Technology, 2012, 46(18): 10263-10270.
[124] WONG F, KURT-KARAKUS P, BIDLEMAN T F. Fate of brominated flame retardants and organochlorine pesticides in urban soil: Volatility and degradation [J]. Environmental Science & Technology, 2012, 46(5): 2668-2674.
[125] DARNERUD P O. Toxic effects of brominated flame retardants in man and in wildlife [J]. Environment International, 2003, 29(6): 841-853. doi: 10.1016/S0160-4120(03)00107-7
[126] LILIENTHAL H, van der VEN L T M, PIERSMA A H, et al. Effects of the brominated flame retardant hexabromocyclododecane (HBCD) on dopamine-dependent behavior and brainstem auditory evoked potentials in a one-generation reproduction study in Wistar rats [J]. Toxicology Letters, 2009, 185(1): 63-72. doi: 10.1016/j.toxlet.2008.12.002
[127] van der VEN L T M, VERHOEF A, van de KUIL T, et al. A 28-day oral dose toxicity study enhanced to detect endocrine effects of hexabromocyclododecane in wistar rats [J]. Toxicological Sciences, 2006, 94(2): 281-292. doi: 10.1093/toxsci/kfl113
[128] FERY Y, MUELLER S O, SCHRENK D. Development of stably transfected human and rat hepatoma cell lines for the species-specific assessment of xenobiotic response enhancer module (XREM)-dependent induction of drug metabolism [J]. Toxicology, 2010, 277(1/2/3): 11-19.
[129] MARIUSSEN E, de FONNUM F. The effect of brominated flame retardants on neurotransmitter uptake into rat brain synaptosomes and vesicles [J]. Neurochemistry International, 2003, 43(4/5): 533-542.
[130] SAEGUSA Y, FUJIMOTO H, WOO G H, et al. Transient aberration of neuronal development in the hippocampal dentate gyrus after developmental exposure to brominated flame retardants in rats [J]. Archives of Toxicology, 2012, 86(9): 1431-1442. doi: 10.1007/s00204-012-0824-4
[131] REFFATTO V, RASINGER J D, CARROLL T S, et al. Parallel in vivo and in vitro transcriptomics analysis reveals calcium and zinc signalling in the brain as sensitive targets of HBCD neurotoxicity [J]. Archives of Toxicology, 2018, 92(3): 1189-1203. doi: 10.1007/s00204-017-2119-2
[132] IBHAZEHIEBO K, IWASAKI T, SHIMOKAWA N, et al. 1, 2, 5, 6, 9, 10-αHexabromocyclododecane (HBCD) impairs thyroid hormone-induced dendrite arborization of Purkinje cells and suppresses thyroid hormone receptor-mediated transcription [J]. The Cerebellum, 2011, 10(1): 22-31. doi: 10.1007/s12311-010-0218-1
[133] AL-MOUSA F, MICHELANGELI F. Some commonly used brominated flame retardants cause Ca2+-ATPase inhibition, beta-amyloid peptide release and apoptosis in SH-SY5Y neuronal cells [J]. PLoS One, 2012, 7(4): e33059. doi: 10.1371/journal.pone.0033059
[134] AL-MOUSA F, MICHELANGELI F. The sarcoplasmic-endoplasmic Reticulum Ca2+-ATPase (SERCA) is the likely molecular target for the acute toxicity of the brominated flame retardant hexabromocyclododecane (HBCD) [J]. Chemico-Biological Interactions, 2014, 207: 1-6. doi: 10.1016/j.cbi.2013.10.021
[135] JOHNSON P I, STAPLETON H M, MUKHERJEE B, et al. Associations between brominated flame retardants in house dust and hormone levels in men [J]. Science of the Total Environment, 2013, 445/446: 177-184. doi: 10.1016/j.scitotenv.2012.12.017
[136] DOROSH A, DĚD L, ELZEINOVÁ F, et al. Assessing oestrogenic effects of brominated flame retardants hexabromocyclododecane and tetrabromobisphenol A on MCF-7 cells [J]. Folia Biologica, 2011, 57(1): 35-39.
[137] HAMERS T, KAMSTRA J H, SONNEVELD E, et al. In vitro profiling of the endocrine-disrupting potency of brominated flame retardants [J]. Toxicological Sciences, 2006, 92(1): 157-173. doi: 10.1093/toxsci/kfj187
[138] FERNIE K J, MARTEINSON S C, BIRD D M, et al. Reproductive changes in American kestrels (Falco sparverius) in relation to exposure to technical hexabromocyclododecane flame retardant [J]. Environmental Toxicology and Chemistry, 2011, 30(11): 2570-2575. doi: 10.1002/etc.652
[139] MARTEINSON S C, KIMMINS S, LETCHER R J, et al. Diet exposure to technical hexabromocyclododecane (HBCD) affects testes and circulating testosterone and thyroxine levels in American kestrels (Falco sparverius) [J]. Environmental Research, 2011, 111(8): 1116-1123. doi: 10.1016/j.envres.2011.08.006
[140] XIE X N, YU C X, REN Q D, et al. Exposure to HBCD promotes adipogenesis both in vitro and in vivo by interfering with Wnt6 expression [J]. Science of the Total Environment, 2020, 705: 135917. doi: 10.1016/j.scitotenv.2019.135917
[141] 王玲, 郑明刚, 仝艳丽, 等. 六溴环十二烷(hexabromocyclododecane, HBCD)暴露对生长阶段文昌鱼的毒性及其几种重要酶活性的影响 [J]. 环境科学学报, 2011, 31(5): 1086-1091. WANG L, ZHENG M G, TONG Y L, et al. Effect of immune-related enzymes in amphioxus exposed to waterborne hexabromocyclododecane(HBCD) [J]. Acta Scientiae Circumstantiae, 2011, 31(5): 1086-1091(in Chinese).
[142] YANAGISAWA R, KOIKE E, WIN-SHWE T T, et al. Impaired lipid and glucose homeostasis in hexabromocyclododecane-exposed mice fed a high-fat diet [J]. Environmental Health Perspectives, 2014, 122(3): 277-283. doi: 10.1289/ehp.1307421
[143] SZABO D T, DILIBERTO J J, HAKK H, et al. Toxicokinetics of the flame retardant hexabromocyclododecane alpha: Effect of dose, timing, route, repeated exposure, and metabolism [J]. Toxicological Sciences, 2011, 121(2): 234-244. doi: 10.1093/toxsci/kfr059
[144] DONG H K, LU G H, YAN Z H, et al. Responses of antioxidant and biotransformation enzymes in Carassius carassius exposed to hexabromocyclododecane [J]. Environmental Toxicology and Pharmacology, 2018, 62: 46-53. doi: 10.1016/j.etap.2018.06.009
[145] SHI Y J, XU X B, CHEN J, et al. Antioxidant gene expression and metabolic responses of earthworms (Eisenia fetida) after exposure to various concentrations of hexabromocyclododecane [J]. Environmental Pollution, 2018, 232: 245-251. doi: 10.1016/j.envpol.2017.09.039
[146] JIN Y Y, SHANG Y, ZHANG D P, et al. Hexabromocyclododecanes promoted autophagy through the PI3K/Akt/mTOR pathway in L02 cells [J]. Journal of Environmental Management, 2019, 244: 77-82.
[147] 陈海波, 李辉, 刘勇弟. 六溴环十二烷急性暴露对秀丽隐杆线虫的毒性效应 [J]. 华东理工大学学报(自然科学版), 2019, 45(1): 87-94. CHEN H B, LI H, LIU Y D. Toxicological effects of hexabromocyclododecane (HBCD) by acute exposure on nematode Caenorhabditis elegans [J]. Journal of East China University of Science and Technology, 2019, 45(1): 87-94(in Chinese).
[148] WANG X L, YANG J, LI H, et al. Chronic toxicity of hexabromocyclododecane(HBCD) induced by oxidative stress and cell apoptosis on nematode Caenorhabditis elegans [J]. Chemosphere, 2018, 208: 31-39. doi: 10.1016/j.chemosphere.2018.05.147
[149] PALACE V P, PLESKACH K, HALLDORSON T, et al. Biotransformation enzymes and thyroid axis disruption in juvenile rainbow trout (Oncorhynchus mykiss) exposed to hexabromocyclododecane diastereoisomers [J]. Environmental Science & Technology, 2008, 42(6): 1967-1972.
[150] MARTEINSON S C, EULAERS I, JASPERS V L B, et al. Transfer of hexabromocyclododecane flame retardant isomers from captive American kestrel eggs to feathers and their association with thyroid hormones and growth [J]. Environmental Pollution, 2017, 220: 441-451. doi: 10.1016/j.envpol.2016.09.086
[151] HUANG X M, CHEN C, SHANG Y, et al. In vitro study on the biotransformation and cytotoxicity of three hexabromocyclododecane diastereoisomers in liver cells [J]. Chemosphere, 2016, 161: 251-258. doi: 10.1016/j.chemosphere.2016.07.001
[152] SHI X L, ZHA J M, WEN B, et al. Diastereoisomer-specific neurotoxicity of hexabromocyclododecane in human SH-SY5Y neuroblastoma cells [J]. Science of the Total Environment, 2019, 686: 893-902. doi: 10.1016/j.scitotenv.2019.06.008
[153] CURRAN I H A, LISTON V, NUNNIKHOVEN A, et al. Toxicologic effects of 28-day dietary exposure to the flame retardant 1, 2-dibromo-4-(1, 2-dibromoethyl)-cyclohexane (TBECH) in F344 rats [J]. Toxicology, 2017, 377: 1-13. doi: 10.1016/j.tox.2016.12.001
[154] LIU P Y, MENG T, LI Y Y, et al. Tetrabromoethylcyclohexane affects gonadal differentiation and development in the frog Pelophylax nigromaculatus [J]. Aquatic Toxicology, 2017, 192: 40-47. doi: 10.1016/j.aquatox.2017.09.009
[155] PRADHAN A, KHARLYNGDOH J B, ASNAKE S, et al. The brominated flame retardant TBECH activates the zebrafish (Danio rerio) androgen receptor, alters gene transcription and causes developmental disturbances [J]. Aquatic Toxicology, 2013, 142/143: 63-72. doi: 10.1016/j.aquatox.2013.07.018
[156] LARSSON A, ERIKSSON L A, ANDERSSON P L, et al. Identification of the brominated flame retardant 1, 2-dibromo-4-(1, 2-dibromoethyl)cyclohexane as an androgen agonist [J]. Journal of Medicinal Chemistry, 2006, 49(25): 7366-7372. doi: 10.1021/jm060713d
[157] NYHOLM J R, NORMAN A, NORRGREN L, et al. Maternal transfer of brominated flame retardants in zebrafish (Danio rerio) [J]. Chemosphere, 2008, 73(2): 203-208. doi: 10.1016/j.chemosphere.2008.04.033
[158] WANG X, WEI L, ZHU J B, et al. Tetrabromoethylcyclohexane (TBECH) exhibits immunotoxicity in murine macrophages [J]. Environmental Toxicology, 2020, 35(2): 159-166. doi: 10.1002/tox.22852
[159] STOJAK B L, van GINKEL R A, IVANCO T L, et al. Acute β-tetrabromoethylcyclohexane (β-TBECH) treatment inhibits the electrical activity of rat Purkinje neurons [J]. Chemosphere, 2019, 231: 301-307. doi: 10.1016/j.chemosphere.2019.05.102
[160] PORTER E, CRUMP D, EGLOFF C, et al. Use of an avian hepatocyte assay and the avian Toxchip Polymerse chain reaction array for testing prioritization of 16 organic flame retardants [J]. Environmental Toxicology and Chemistry, 2014, 33(3): 573-582. doi: 10.1002/etc.2469
[161] KHALAF H, LARSSON A, BERG H, et al. Diastereomers of the brominated flame retardant 1, 2-dibromo-4-(1, 2 dibromoethyl)cyclohexane induce androgen receptor activation in the HepG2 hepatocellular carcinoma cell line and the LNCaP prostate cancer cell line [J]. Environmental Health Perspectives, 2009, 117(12): 1853-1859. doi: 10.1289/ehp.0901065
[162] MARTEINSON S C, FERNIE K J. Is the current-use flame retardant, DBE-DBCH, a potential obesogen?Effects on body mass, fat content and associated behaviors in American kestrels [J]. Ecotoxicology and Environmental Safety, 2019, 169: 770-777. doi: 10.1016/j.ecoenv.2018.11.104
[163] HUANG H L, LV L, WANG D, et al. Biochemical and molecular responses of maize (Zea mays L. ) to 1, 2-dibromo-4-(1, 2 dibromoethyl) cyclohexane (TBECH) diastereomers: Oxidative stress, DNA damage, antioxidant enzyme gene expression and diversity of root exudates [J]. Science of the Total Environment, 2021, 753: 141872. doi: 10.1016/j.scitotenv.2020.141872
[164] SAUNDERS D M V, HIGLEY E B, HECKER M, et al. In vitro endocrine disruption and TCDD-like effects of three novel brominated flame retardants: TBPH, TBB, & TBCO [J]. Toxicology Letters, 2013, 223(2): 252-259. doi: 10.1016/j.toxlet.2013.09.009
[165] van ESSEN D, DEVOY C, MILLER J, et al. Effects of the brominated flame retardant, TBCO, on development of zebrafish (Danio rerio) embryos [J]. Chemosphere, 2021, 266: 129195. doi: 10.1016/j.chemosphere.2020.129195