[1] |
ZHAO X, ZHENG Y, HU S, et al. Improving urban drainage systems to mitigate PPCPs pollution in surface water: A watershed perspective [J]. Journal of Hazardous Materials, 2021, 411: 125047. doi: 10.1016/j.jhazmat.2021.125047
|
[2] |
LI L, ZHAO X L, LIU D, et al. Occurrence and ecological risk assessment of PPCPs in typical inflow rivers of Taihu lake, China [J]. Journal of Environmental Management, 2021, 285: 112176. doi: 10.1016/j.jenvman.2021.112176
|
[3] |
HAMID N, JUNAID M, WANG Y, et al. Chronic exposure to PPCPs mixture at environmentally relevant concentrations (ERCs) altered carbohydrate and lipid metabolism through gut and liver toxicity in zebrafish [J]. Environmental Pollution, 2021, 273: 116494. doi: 10.1016/j.envpol.2021.116494
|
[4] |
邓月华. 改性凹凸棒土吸附去除水中铅离子、心得安及溶解性有机物[D]. 南京: 南京大学, 2012.
DENG Y H. Adsorption and removal of lead ion, propranolol and dissolved organic matter in water by modified attapulgite [D]. Nanjing: Nanjing University, 2012(in Chinese).
|
[5] |
NIE W J, LI Y N, CHEN L Y, et al. Interaction between multi-walled carbon nanotubes and propranolol [J]. Scientific Reports, 2020, 10(1): 1025-1029. doi: 10.1038/s41598-020-57894-y
|
[6] |
KUMAR R, SARMAH A K, PADHYE L P. Fate of pharmaceuticals and personal care products in a wastewater treatment plant with parallel secondary wastewater treatment train [J]. Journal of Environmental Management, 2019, 233: 649-659.
|
[7] |
VALDES M E, AME M V, BISTONI M D L A, et al. Occurrence and bioaccumulation of pharmaceuticals in a fish species inhabiting the Suquía River basin (Córdoba, Argentina) [J]. Science of The Total Environment, 2014, 472: 389-396. doi: 10.1016/j.scitotenv.2013.10.124
|
[8] |
BARBIERI M, LICHA T, NOEDLER K, et al. Fate of β-blockers in aquifer material under nitrate reducing conditions: batch experiments [J]. Chemosphere, 2012, 89(11): 1272-1277. doi: 10.1016/j.chemosphere.2012.05.019
|
[9] |
MADUREIRA T V, ROCHA M J, CRUZEIRO C, et al. The toxicity potential of pharmaceuticals found in the Douro River estuary (Portugal): Evaluation of impacts on fish liver, by histopathology, stereology, vitellogenin and CYP1A immunohistochemistry, after sub-acute exposures of the zebrafish model [J]. Environmental Toxicology & Pharmacology, 2012, 34(1): 34-45.
|
[10] |
VIENO N M, TUHKANEN T, KRONBERG L. Analysis of neutral and basic pharmaceuticals in sewage treatment plants and in recipient rivers using solid phase extraction and liquid chromatography-tandem mass spectrometry detection [J]. Journal of Chromatography A, 2006, 1134(12): 101-111.
|
[11] |
STANLEY J K, RAMIREZ A J, MOTTALEB M, et al. Enantiospecific toxicity of the beta-blocker propranolol to Daphnia magna and Pimephales promelas [J]. Environmental Toxicology & Chemistry, 2006, 25(7): 1780-1786.
|
[12] |
DASH B, DASH B, RATH S S. A thorough understanding of the adsorption of Ni (Ⅱ), Cd (Ⅱ) and Zn (Ⅱ) on goethite using experiments and molecular dynamics simulation [J]. Separation and Purification Technology, 2020, 240: 1-14.
|
[13] |
尹雪斐, 杨蕊嘉, 刘玉玲, 等. Cd(Ⅱ)与As(Ⅴ)在土壤铁氧化物和细菌表面上的共吸附研究 [J]. 生态环境学报, 2021, 30(03): 614-620.
YIN X F, YANG R J, LIU Y L, et al. CO adsorption of CD (Ⅱ) and as (Ⅴ) on soil iron oxides and bacterial surfaces [J]. Journal of ecological environment, 2021, 30(03): 614-620(in Chinese).
|
[14] |
ZHAO Y, LIU F, QIN X P. Adsorption of diclofenac onto goethite: Adsorption kinetics and effects of pH [J]. Chemosphere, 2017, 180: 373-378. doi: 10.1016/j.chemosphere.2017.04.007
|
[15] |
FILEP T, SZABOÓ L, KONDOR A C, et al. Evaluation of the effect of the intrinsic chemical properties of pharmaceutically active compounds (PhACs) on sorption behaviour in soils and goethite [J]. Ecotoxicology and Environmental Safety, 2021, 215: 112120. doi: 10.1016/j.ecoenv.2021.112120
|
[16] |
LI J C, ZHAO L, ZHANG R C, et al. Transformation of tetracycline antibiotics with goethite: Mechanism, kinetic modeling and toxicity evaluation [J]. Water Research, 2021, 199: 117196. doi: 10.1016/j.watres.2021.117196
|
[17] |
ALIMI O S, BUARZ J F, HERNANDEZ L M, et al. Microplastics and Nanoplastics in Aquatic Environments: Aggregation, Deposition, and Enhanced Contaminant Transport [J]. Environmental Science & Technology, 2018, 52(4): 1704-1724.
|
[18] |
GUO X T, HU G L, FAN X Y, et al. Sorption properties of cadmium on microplastics: The common practice experiment and A two-dimensional correlation spectroscopic study [J]. Ecotoxicology and Environmental Safety, 2020, 190: 110118. doi: 10.1016/j.ecoenv.2019.110118
|
[19] |
YU F, YANG C F, HUANG G Q, et al. Interfacial interaction between diverse microplastics and tetracycline by adsorption in an aqueous solution [J]. Science of the Total Environment, 2020, 721: 13772-13779.
|
[20] |
HUANG D F, XU Y B, YU X Q, et al. Effect of cadmium on the sorption of tylosin by polystyrene microplastics [J]. Ecotoxicology and Environmental Safety, 2021, 207: 111255. doi: 10.1016/j.ecoenv.2020.111255
|
[21] |
RAZANAJATOVO R M, DING J N, ZHANG S S, et al. Sorption and desorption of selected pharmaceuticals by polyethylene microplastics [J]. Marine Pollution Bulletin, 2018, 136: 516-523. doi: 10.1016/j.marpolbul.2018.09.048
|
[22] |
PUCKOWSKI A, CWIĘK W, MIODUSZEWSKA K, et al. Sorption of pharmaceuticals on the surface of microplastics [J]. Chemosphere, 2021, 263: 127976. doi: 10.1016/j.chemosphere.2020.127976
|
[23] |
郭学涛. 针铁矿/腐殖酸对典型抗生素的吸附及光解机理研究[D]. 广州: 华南理工大学, 2014.
GUO X T. Study on adsorption and photolysis mechanism of goethite / humic acid on Typical Antibiotics [D]. Guangzhou: South China University of Technology, 2014(in Chinese).
|
[24] |
DENGG Y H, LI Y N, NIE W J, et al. Fast removal of propranolol from water by attapulgite/graphene oxide magnetic ternary composites [J]. Materials, 2019, 12(6): 924. doi: 10.3390/ma12060924
|
[25] |
LUO Y Y, ZHANG Y Y, XU Y B, et al. Distribution characteristics and mechanism of microplastics mediated by soil physicochemical properties [J]. Science of the Total Environment, 2020, 726: 138389. doi: 10.1016/j.scitotenv.2020.138389
|
[26] |
邓月华, 王文姬, 贺艳, 等. 普萘洛尔在太湖沉积物上的吸附特征 [J]. 环境化学, 2021, 40(1): 263-271. doi: 10.7524/j.issn.0254-6108.2020060104
DENG Y H, WANG W J, HE Y, et al. Adsorption of propranolol on Taihu Lake sediments [J]. Environmental Chemistry, 2021, 40(1): 263-271(in Chinese). doi: 10.7524/j.issn.0254-6108.2020060104
|
[27] |
LEUNG K, CRISCENTI L J. Lead and selenite adsorption at water–goethite interfaces from first principles [J]. Journal of Physics:Condensed Matter, 2017, 29(36): 365101. doi: 10.1088/1361-648X/aa7e4f
|
[28] |
ZHANG Y, LUO Y, GUO X, et al. Charge mediated interaction of polystyrene nanoplastic (PSNP) with minerals in aqueous phase [J]. Water Research, 2020, 178: 115861. doi: 10.1016/j.watres.2020.115861
|
[29] |
WANG L, LI Y T, WENG L P, et al. Using chromatographic and spectroscopic parameters to characterize preference and kinetics in the adsorption of humic and fulvic acid to goethite [J]. Science of the Total Environment, 2019, 666: 766-777. doi: 10.1016/j.scitotenv.2019.02.235
|
[30] |
CHIANESE S, FENTI A, IOVINO P, et al. Sorption of organic pollutants by humic acids: A review [J]. Molecules, 2020, 25(4): 918. doi: 10.3390/molecules25040918
|
[31] |
许佳瑶, 孙红文, 汪磊. β-受体阻断剂在粘土上的吸附行为 [J]. 环境化学, 2013, 32(11): 2109-2114. doi: 10.7524/j.issn.0254-6108.2013.11.013
XU J Y, SUN H W, WANG L. Adsorption behavior of β-receptor blocker on clay [J]. Environmental Chemistry, 2013, 32(11): 2109-2114(in Chinese). doi: 10.7524/j.issn.0254-6108.2013.11.013
|