[1] |
LIU Z M, IHL WOO S. Recent advances in catalytic DeNOX Science and technology [J]. Catalysis Reviews, 2006, 48(1): 43-89. doi: 10.1080/01614940500439891
|
[2] |
HANEDA M, HAMADA H. Recent progress in catalytic NO decomposition [J]. Comptes Rendus Chimie, 2016, 19(10): 1254-1265. doi: 10.1016/j.crci.2015.07.016
|
[3] |
SUN Q, WANG Z, WANG D, et al. A review on the catalytic decomposition of NO to N2 and O2: Catalysts and processes [J]. Catalysis Science & Technology, 2018, 8(18): 4563-4575.
|
[4] |
ZHU J J, LI H L, ZHONG L Y, et al. Perovskite oxides: Preparation, characterizations, and applications in heterogeneous catalysis [J]. ACS Catalysis, 2014, 4(9): 2917-2940. doi: 10.1039/C8CY01114A
|
[5] |
马爱静, 王绍增, 邹鸿鹄, 等. La0.7Sr0.3Co1-xFexO3催化剂氮氧化物储存及抗硫性能 [J]. 物理化学学报, 2012, 28(6): 1474-1480. doi: 10.3866/PKU.WHXB201203311
MA A J, WANG S Z, ZOU H H, et al. The performance of the NOx storage capacity and sulfur tolerance of the La0.7Sr0.3Co1-xFexO3 catalyst [J]. Acta Physico-Chimica Sinica, 2012, 28(6): 1474-1480(in Chinese). doi: 10.3866/PKU.WHXB201203311
|
[6] |
姜慧超, 赵朝成, 王一迪. 直接法合成杂原子Cu-ZSM-5用于直接催化分解NOx的研究 [J]. 现代化工, 2014, 34(11): 83-86. doi: 10.16606/j.cnki.issn0253-4320.2014.11.004
JIANG H C, ZHAO C C, WANG Y D. Direct synthesis of hetero atoms Cu- ZSM- 5 for direct catalytic decomposition of NOx [J]. Modern Chemical Industry, 2014, 34(11): 83-86(in Chinese). doi: 10.16606/j.cnki.issn0253-4320.2014.11.004
|
[7] |
陈艳平, 程党国, 陈丰秋, 等. Cu-ZSM-5分子筛催化分解及选择性催化还原NO[J]. 化学进展, 2014, 26(增刊1): 248-258.
CHEN Y P, CHENG D G, CHEN F Q, et al. NO decomposition and selective catalytic reduction of NO over Cu-ZSM-5 zeolite[J]. Progress in Chemistry, 2014, 26(Sup 1): 248-258(in Chinese).
|
[8] |
IMANAKA N, MASUI T. Advanced materials for environmental catalysts [J]. Chemical Record, 2009, 9(1): 40-50.
|
[9] |
BION N, CAN F, COURTOIS X, et al. Transition metal oxides for combustion and depollution processes[M]//Metal Oxides in Heterogeneous Catalysis. Amsterdam: Elsevier, 2018: 287-353.
|
[10] |
DOI Y, HANEDA M, OZAWA M. Direct decomposition of NO on Ba catalysts supported on rare earth oxides [J]. Journal of Molecular Catalysis A:Chemical, 2014, 383/384: 70-76. doi: 10.1016/j.molcata.2013.11.033
|
[11] |
ISHIHARA T, GOTO K. Direct decomposition of NO over BaO/Y2O3 catalyst [J]. Catalysis Today, 2011, 164(1): 484-488. doi: 10.1016/j.cattod.2010.12.005
|
[12] |
MASAKI H, MASUI T, IMANAKA N. Direct decomposition of nitric oxide into nitrogen and oxygen over C-type cubic Y2O3-ZrO2 solid solutions [J]. Journal of Alloys and Compounds, 2008, 451(1/2): 406-409.
|
[13] |
IMANAKA N, MASUI T. Advances in direct NOx decomposition catalysts [J]. Applied Catalysis A:General, 2012, 431/432: 1-8. doi: 10.1016/j.jallcom.2007.04.158
|
[14] |
MASUI T, UEJIMA S, TSUJIMOTO S, et al. Direct NO decomposition over C-type cubic Y2O3-Pr6O11-Eu2O3 solid solutions [J]. Catalysis Today, 2015, 242: 338-342. doi: 10.1016/j.cattod.2014.05.047
|
[15] |
TSUJIMOTO S, YASUDA K, MASUI T, et al. Effects of Tb and Ba introduction on the reaction mechanism of direct NO decomposition over C-type cubic rare earth oxides based on Y2O3 [J]. Catalysis Science & Technology, 2013, 3(8): 1928-1936. doi: 10.1039/C3CY20746C
|
[16] |
TSUBOI G, HANEDA M, NAGAO Y, et al. Direct decomposition of NO over supported-alkaline earth metal oxide catalysts [J]. Journal of the Japan Petroleum Institute, 2005, 48(1): 53-59. doi: 10.1627/jpi.48.53
|
[17] |
GOTO K, MATSUMOTO H, ISHIHARA T. Direct decomposition of NO on Ba/Ba-Y-O catalyst[J]. Topics in Catalysis, 2009, 52(13/14/15/16/17/18/19/20): 1776-1780.
|
[18] |
GOTO K, ISHIHARA T. Direct decomposition of NO into N2 and O2 over Ba3Y3.4Sc0.6O9 [J]. Applied Catalysis A:General, 2011, 409/410: 66-73. doi: 10.1007/s11244-009-9337-7
|
[19] |
ISHIHARA T, FANG S M, IDE T. Effects of strain induced by Au dispersion in Ba and Ni doped Y2O3 on direct decomposition of NO [J]. Molecular Catalysis, 2019, 475: 110488. doi: 10.1016/j.mcat.2019.110488
|
[20] |
TSUJIMOTO S, WANG X J, MASUI T, et al. Direct decomposition of NO into N2 and O2 on C-type cubic Y2O3–ZrO2 and Y2O3–ZrO2–BaO [J]. Bulletin of the Chemical Society of Japan, 2011, 84(7): 807-811. doi: 10.1246/bcsj.20100360
|
[21] |
TSUJIMOTO S, NISHIMURA C, MASUI T, et al. Coexisting gas-resistant C-type cubic Yb2O3–Tb4O7 Catalysts for direct NO decomposition [J]. Chemistry Letters, 2011, 40(7): 708-710. doi: 10.1246/cl.2011.708
|
[22] |
de LEEUW D M, MUTSAERS C A H A, LANGEREIS C, et al. Compounds and phase compatibilities in the system Y2O3-BaO-CuO at 950℃ [J]. Physica C:Superconductivity, 1988, 152(1): 39-49. doi: 10.1016/0921-4534(88)90071-8
|
[23] |
SHANNON R D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides [J]. Acta Crystallographica Section A, 1976, 32(5): 751-767. doi: 10.1107/S0567739476001551
|