[1] MOHMOOD I, LOPES C B, LOPES I, et al. Remediation of mercury contaminated saltwater with functionalized silica coated magnetite nanoparticles [J]. Science of The Total Environment, 2016, 557: 712-721.
[2] YE J, RENSING C, ROSEN B P, et al. Arsenic biomethylation by photosynthetic organisms [J]. Trends in Plant Science, 2012, 17(3): 155-162. doi: 10.1016/j.tplants.2011.12.003
[3] XU D, SCHAUM C E, LI B, et al. Acclimation and adaptation to elevated pCO2 increase arsenic resilience in marine diatoms[J]. The ISME Journal, 2021, 15: 1599-1613.
[4] 陈保卫, LE X. CHRIS. 中国关于砷的研究进展 [J]. 环境化学, 2011, 30(11): 1936-1943. CHEN B W, LE X. CHRIS. Recent progress in arsenic research in China [J]. Environmental Chemistry, 2011, 30(11): 1936-1943(in Chinese).
[5] WANG Y, WANG S, XU P P, et al. Review of arsenic speciation, toxicity and metabolism in microalgae [J]. Reviews in Environmental Science and Bio/Technology, 2015, 14(3): 427-451. doi: 10.1007/s11157-015-9371-9
[6] 张圣洁, 蔡中华, 朱伟胜, 等. 藻际环境中胞外聚合物的研究进展 [J]. 微生物学报, 2020, 60(8): 1521-1533. ZHANG S J, CAI Z H, ZHU W S, et al. Advances in extracellular polymeric substances in phycosphere environment [J]. Acta Microbiologica Sinica, 2020, 60(8): 1521-1533(in Chinese).
[7] GAN N Q, XIAO Y, ZHU L, et al. The role of microcystins in maintaining colonies of bloom‐forming Microcystis spp [J]. Environmental Microbiology, 2012, 14(3): 730-742. doi: 10.1111/j.1462-2920.2011.02624.x
[8] 毕相东, 戴伟, 张树林, 等. 微囊藻群体的竞争优势及其形成机制的研究进展 [J]. 环境科学与技术, 2014, 37(7): 41-44. BI X D, DAI W, ZHANG S L, et al. Research progress on the competitive advantages and formation mechanism of Microcystis colony [J]. Environmental Science & Technology, 2014, 37(7): 41-44(in Chinese).
[9] VOLESKY B, HOLAN Z. Biosorption of heavy metals [J]. Biotechnology Progress, 1995, 11(3): 235-250. doi: 10.1021/bp00033a001
[10] XIAO R, ZHENG Y. Overview of microalgal extracellular polymeric substances (EPS) and their applications [J]. Biotechnology Advances, 2016, 34(7): 1225-1244. doi: 10.1016/j.biotechadv.2016.08.004
[11] MOHITE B V, KOLI S H, NARKHEDE C P, et al. Prospective of microbial exopolysaccharide for heavy metal exclusion [J]. Applied Biochemistry and Biotechnology, 2017, 183(2): 582-600. doi: 10.1007/s12010-017-2591-4
[12] ZHANG J Y, ZHOU F, LIU Y X, et al. Effect of extracellular polymeric substances on arsenic accumulation in Chlorella pyrenoidosa [J]. Science of The Total Environment, 2020, 704: 135368. doi: 10.1016/j.scitotenv.2019.135368
[13] NAVEED S, LI C H, LU X D, et al. Microalgal extracellular polymeric substances and their interactions with metal(loid)s: A review [J]. Critical Reviews in Environmental Science and Technology, 2019, 49(19): 1769-1802. doi: 10.1080/10643389.2019.1583052
[14] WEI L L, LI J J, XUE M, et al. Adsorption behaviors of Cu2+, Zn2+ and Cd2+ onto proteins, humic acid, and polysaccharides extracted from sludge EPS: Sorption properties and mechanisms [J]. Bioresource Technology, 2019, 291: 121868. doi: 10.1016/j.biortech.2019.121868
[15] LI C H, ZHENG C, FU H X, et al. Contrasting detoxification mechanisms of Chlamydomonas reinhardtii under Cd and Pb stress [J]. Chemosphere, 2021, 274: 129771. doi: 10.1016/j.chemosphere.2021.129771
[16] 梁君, 宋文成, 马金宝, 等. 微生物胞外聚合物对水中As(V)的吸附性能研究 [J]. 环境工程, 2016(S1): 226-229. LIANG J, SONG W C, MA J B, et al. Study on sorption performances of As(V) by extracellular polymeric substance [J]. Environmental Engineering, 2016(S1): 226-229(in Chinese).
[17] 黄飞, 周昉, 姜舒扬, 等. 绿藻胞外聚合物对无机砷生物累积特征的影响 [J]. 环境化学, 2019, 38(5): 1021-1027. HUANG F, ZHOU F, JIANG S Y, et al. Effects of extracellular polymeric substances on the bioaccumulation of inorganic arsenic by green microalgae [J]. Environmental Chemistry, 2019, 38(5): 1021-1027(in Chinese).
[18] HOAGLAND K D, ROSOWSKI J R, GRETZ M R, et al. Diatom extracellular polymeric substances: Function, fine structure, chemistry and physiology [J]. Journal of Phycology, 1993, 29(5): 537-566. doi: 10.1111/j.0022-3646.1993.00537.x
[19] 丁腾达. 硅藻对三价砷的吸附吸收行为及机制[D]. 杭州: 浙江大学, 2014. DING T D. Biosorption behavior and mechanism of arsenite on diatoms[D]. Hangzhou: Zhejiang University, 2014(in Chinese).
[20] 李崇华, 赵方慈, 喻琪盛, 等. 胞外聚合物对莱茵衣藻砷富集和形态转化的影响 [J]. 湖南农业大学学报(自然科学版), 2019, 45(4): 384-390. LI C H, ZHAO F C, YU Q S, et al. Effects of extracellular polymeric substances on the accumulation and transformation of arsenic by Chlamydomonas reinhardtii [J]. Journal of Hunan Agricultural University (Natural Sciences), 2019, 45(4): 384-390(in Chinese).
[21] 张金羽, 葛滢, 张春华. 水生生物中砷的提取和形态分析的研究进展 [J]. 理化检验-化学分册, 2020, 56(7): 836-844. ZHANG J Y, GE Y, ZHANG C H. Research progress on extraction and species analysis of arsenic in aquatic organisms [J]. Physical Testing and Chemical Analysis (Part B:Chemical Analysis), 2020, 56(7): 836-844(in Chinese).
[22] GE Y, NING Z B, WANG Y, et al. Quantitative proteomic analysis of Dunaliella salina upon acute arsenate exposure [J]. Chemosphere, 2016, 145: 112-118. doi: 10.1016/j.chemosphere.2015.11.049
[23] NAVEED S, YU Q N, ZHANG C H, et al. Extracellular polymeric substances alter cell surface properties, toxicity, and accumulation of arsenic in Synechocystis PCC6803 [J]. Environmental Pollution, 2020, 261: 114233. doi: 10.1016/j.envpol.2020.114233
[24] 康福星, 龙健, 王倩, 等. 微生物胞外聚合物对水体重金属和富营养元素的环境生化效应研究展望 [J]. 应用与环境生物学报, 2010, 16(1): 129-134. doi: 10.3724/SP.J.1145.2010.00129 KANG F X, LONG J, WANG Q, et al. Environmental & biochemical effects of microbial extracellular polymeric substances on the heavy metals and eutrophic elements in water areas: A review [J]. Chinese Journal of Applied and Environmental Biology, 2010, 16(1): 129-134(in Chinese). doi: 10.3724/SP.J.1145.2010.00129
[25] KIRAN B, KAUSHIK A. Chromium binding capacity of Lyngbya putealis exopolysaccharides [J]. Biochemical Engineering Journal, 2008, 38(1): 47-54. doi: 10.1016/j.bej.2007.06.007
[26] HUERTAS M J, LOPEZ-MAURY L, GINER-LAMIA J, et al. Metals in cyanobacteria: analysis of the copper, nickel, cobalt and arsenic homeostasis mechanisms [J]. Life, 2014, 4(4): 865-886. doi: 10.3390/life4040865
[27] ZHAO J F, LIU S X, LIU N, et al. Accelerated productions and physicochemical characterizations of different extracellular polymeric substances from Chlorella vulgaris with nano-ZnO [J]. Science of the Total Environment, 2019, 658: 582-589. doi: 10.1016/j.scitotenv.2018.12.019
[28] MA J, ZHOU B B, CHEN F Y, et al. How marine diatoms cope with metal challenge: Insights from the morphotype-dependent metal tolerance in Phaeodactylum tricornutum [J]. Ecotoxicology and Environmental Safety, 2021, 208: 111715. doi: 10.1016/j.ecoenv.2020.111715
[29] YIN X X, CHEN J, QIN J, et al. Biotransformation and volatilization of arsenic by three photosynthetic cyanobacteria [J]. Plant Physiology, 2011, 156(3): 1631-1638. doi: 10.1104/pp.111.178947
[30] FOSTER S, THOMSON D, and MAHER W. Uptake and metabolism of arsenate by anexic cultures of the microalgae Dunaliella tertiolecta and Phaeodactylum tricornutum [J]. Marine Chemistry, 2008, 108(3-4): 172-183. doi: 10.1016/j.marchem.2007.11.005
[31] 郑燕恒, 李颢, 张春华, 等. 胞内砷磷含量和比值对莱茵衣藻砷酸盐和亚砷酸盐耐性的影响 [J]. 环境化学, 2018, 37(1): 75-81. doi: 10.7524/j.issn.0254-6108.2017040702 ZHENG Y H, LI H, ZHANG C H, et al. Effects of intracellular arsenic and phosphorus content and ratio on the tolerance of arsenate and arsenite in Chlamydomonas reinhardtii [J]. Environmental Chemistry, 2018, 37(1): 75-81(in Chinese). doi: 10.7524/j.issn.0254-6108.2017040702
[32] TAMAKI S, FRANKENBERGER W T. Environmental biochemistry of arsenic [J]. Reviews of Environmental Contamination and Toxicology, 1992, 124: 79-110.
[33] DEBNATH M, BHADURY P. Adaptive responses and arsenic transformation potential of diazotrophic Cyanobacteria isolated from rice fields of arsenic affected Bengal Delta Plain [J]. Journal of Applied Phycology, 2016, 28(5): 2777-2792. doi: 10.1007/s10811-016-0820-9
[34] PAPRY R I, ISHII K, MAMUN M A A, et al. Arsenic biotransformation potential of six marine diatom species: Effect of temperature and salinity [J]. Scientific Reports, 2019, 9: 10226. doi: 10.1038/s41598-019-46551-8
[35] 王亚, 张春华, 王淑, 等. 带菌盐藻对不同形态砷的富集和转化研究 [J]. 环境科学, 2013, 34(11): 4257-4265. WANG Y, ZHANG C H, WANG S, et al. Accumulation and transformation of different arsenic species in nonaxenic Dunaliella salina [J]. Environmental Science, 2013, 34(11): 4257-4265(in Chinese).
[36] BOGGS M A, JIAO Y Q, DAI Z R, et al. Interactions of plutonium with Pseudomonas sp. strain EPS-1W and its extracellular polymeric substances [J]. Applied and Environmental Microbiology, 2016, 82(24): 7093-7101. doi: 10.1128/AEM.02572-16
[37] ZHANG X, YANG C W, YU H Q, et al. Light-induced reduction of silver ions to silver nanoparticles in aquatic environments by microbial extracellular polymeric substances (EPS) [J]. Water Research, 2016, 106: 242-248. doi: 10.1016/j.watres.2016.10.004
[38] ZHOU L, LI A, MA F, et al. Sb(V) reduced to Sb(III) and more easily adsorbed in the form of Sb(OH)3 by microbial extracellular polymeric substances and core-shell magnetic nanocomposites [J]. ACS Sustainable Chemistry & Engineering, 2019, 7(11): 10075-10083.