[1] WANG C C, LI J R, LV X L, et al. Photocatalytic organic pollutants degradation in metal–organic frameworks [J]. Energy Environ Sci, 2014, 7(9): 2831-2867. doi: 10.1039/C4EE01299B
[2] FURUKAWA H, CORDOVA K E, O'KEEFFE M, et al. The chemistry and applications of metal-organic frameworks [J]. Science, 2013, 341(6149): 1230444. doi: 10.1126/science.1230444
[3] 王崇臣, 王恂. 金属-有机骨架在水处理中的应用研究进展 [J]. 工业水处理, 2020, 40(11): 1-9. WANG C C, WANG X. The application of metal-organic frameworks in the wastewater treatment: A state-of-the-art review [J]. Industrial Water Treatment, 2020, 40(11): 1-9(in Chinese).
[4] 衣晓虹, 王崇臣. 铁基金属-有机骨架及其复合物高级氧化降解水中新兴有机污染物 [J]. 化学进展, 2021, 33(3): 471-489. YI X H, WANG C C. Elimination of emerging organic contaminants in wastewater by advanced oxidation process over iron-based MOFs and their composites [J]. Progress in Chemistry, 2021, 33(3): 471-489(in Chinese).
[5] 庞达, 王崇臣, 王鹏, 等. ZIF-67高效吸附去除水中的洛克沙胂 [J]. 环境化学, 2020, 39(6): 1451-1463. doi: 10.7524/j.issn.0254-6108.2020021804 PANG D, WANG C C, WANG P, et al. Efficiently adsorptive removal towards roxarsone with ZIF-67 [J]. Environmental Chemistry, 2020, 39(6): 1451-1463(in Chinese). doi: 10.7524/j.issn.0254-6108.2020021804
[6] FALCARO P, RICCO R, YAZDI A, et al. Application of metal and metal oxide nanoparticles@MOFs [J]. Coordination Chemistry Reviews, 2016, 307: 237-254. doi: 10.1016/j.ccr.2015.08.002
[7] MAURIN G, SERRE C, COOPER A, et al. The new age of MOFs and of their porous-related solids [J]. Chemical Society Reviews, 2017, 46(11): 3104-3107. doi: 10.1039/C7CS90049J
[8] HUANG X C, LIN Y Y, ZHANG J P, et al. Ligand-directed strategy for zeolite-type metal-organic frameworks: Zinc(II) imidazolates with unusual zeolitic topologies [J]. Angewandte Chemie (International Ed. in English), 2006, 45(10): 1557-1559. doi: 10.1002/anie.200503778
[9] LEE Y R, JANG M S, CHO H Y, et al. ZIF-8: A comparison of synthesis methods [J]. Chemical Engineering Journal, 2015, 271: 276-280. doi: 10.1016/j.cej.2015.02.094
[10] ZHANG C, LIVELY R P, ZHANG K, et al. Unexpected molecular sieving properties of zeolitic imidazolate framework-8 [J]. The Journal of Physical Chemistry Letters, 2012, 3(16): 2130-2134. doi: 10.1021/jz300855a
[11] FAIREN-JIMENEZ D, MOGGACH S A, WHARMBY M T, et al. Opening the gate: Framework flexibility in ZIF-8 explored by experiments and simulations [J]. Journal of the American Chemical Society, 2011, 133(23): 8900-8902. doi: 10.1021/ja202154j
[12] MU L, LIU B, LIU H, et al. A novel method to improve the gas storage capacity of ZIF-8 [J]. Journal of Materials Chemistry, 2012, 22(24): 12246. doi: 10.1039/c2jm31541f
[13] LI L B, DUAN Y F, LIAO S W, et al. Adsorption and separation of propane/propylene on various ZIF-8 polymorphs: Insights from GCMC simulations and the ideal adsorbed solution theory (IAST) [J]. Chemical Engineering Journal, 2020, 386: 123945. doi: 10.1016/j.cej.2019.123945
[14] ZHANG L, QIAN G, LIU Z J, et al. Adsorption and separation properties of n-pentane/isopentane on ZIF-8 [J]. Separation and Purification Technology, 2015, 156: 472-479. doi: 10.1016/j.seppur.2015.10.037
[15] JIAN M P, LIU B, ZHANG G S, et al. Adsorptive removal of arsenic from aqueous solution by zeolitic imidazolate framework-8 (ZIF-8) nanoparticles [J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2015, 465: 67-76. doi: 10.1016/j.colsurfa.2014.10.023
[16] ZHANG K, LIVELY R P, ZHANG C, et al. Investigating the intrinsic ethanol/water separation capability of ZIF-8: An adsorption and diffusion study [J]. The Journal of Physical Chemistry C, 2013, 117(14): 7214-7225. doi: 10.1021/jp401548b
[17] 郭新兴, 刘建国, 王鹏, 等. 电化学沉积法制备ZIF-8及其对四环素的吸附 [J]. 环境化学, 2020, 39(3): 581-592. doi: 10.7524/j.issn.0254-6108.2018120304 GUO X X, LIU J G, WANG P, et al. Electrochemical synthesis of ZIF-8 for adsorption of tetracycline [J]. Environmental Chemistry, 2020, 39(3): 581-592(in Chinese). doi: 10.7524/j.issn.0254-6108.2018120304
[18] ZHU M Q, SRINIVAS D, BHOGESWARARAO S, et al. Catalytic activity of ZIF-8 in the synthesis of styrene carbonate from CO2 and styrene oxide [J]. Catalysis Communications, 2013, 32: 36-40. doi: 10.1016/j.catcom.2012.12.003
[19] TRAN U P N, LE K K A, PHAN N T S. Expanding applications of metal–organic frameworks: Zeolite imidazolate framework ZIF-8 as an efficient heterogeneous catalyst for the Knoevenagel reaction [J]. ACS Catalysis, 2011, 1(2): 120-127. doi: 10.1021/cs1000625
[20] VASCONCELOS I B, SILVA T G D, MILITÃO G C G, et al. Cytotoxicity and slow release of the anti-cancer drug doxorubicin from ZIF-8 [J]. RSC Advances, 2012, 2(25): 9437. doi: 10.1039/c2ra21087h
[21] JING H P, WANG C C, ZHANG Y W, et al. Photocatalytic degradation of methylene blue in ZIF-8 [J]. RSC Adv, 2014, 4(97): 54454-54462. doi: 10.1039/C4RA08820D
[22] XIA Y, SHANG S K, ZENG X R, et al. A novel Bi2MoO6/ZIF-8 composite for enhanced visible light photocatalytic activity [J]. Nanomaterials, 2019, 9(4): 545. doi: 10.3390/nano9040545
[23] PANNERI S, THOMAS M, GANGULY P, et al. C3N4 anchored ZIF 8 composites: Photo-regenerable, high capacity sorbents as adsorptive photocatalysts for the effective removal of tetracycline from water [J]. Catalysis Science & Technology, 2017, 7(10): 2118-2128.
[24] ZHOU J B, LIU W, CAI W Q. The synergistic effect of Ag/AgCl@ZIF-8 modified g-C3N4 composite and peroxymonosulfate for the enhanced visible-light photocatalytic degradation of levofloxacin [J]. Science of the Total Environment, 2019, 696: 133962. doi: 10.1016/j.scitotenv.2019.133962
[25] MAHMOODI N M, KESHAVARZI S, OVEISI M, et al. Metal-organic framework (ZIF-8)/inorganic nanofiber (Fe2O3) nanocomposite: Green synthesis and photocatalytic degradation using LED irradiation [J]. Journal of Molecular Liquids, 2019, 291: 111333. doi: 10.1016/j.molliq.2019.111333
[26] SAJJADI S, KHATAEE A, DARVISHI CHESHMEH SOLTANI R, et al. Implementation of magnetic Fe3O4@ZIF-8 nanocomposite to activate sodium percarbonate for highly effective degradation of organic compound in aqueous solution [J]. Journal of Industrial and Engineering Chemistry, 2018, 68: 406-415. doi: 10.1016/j.jiec.2018.08.016
[27] CHEN W Q, LI L Y, LI L, et al. MoS2/ZIF-8 hybrid materials for environmental catalysis: Solar-driven antibiotic-degradation engineering [J]. Engineering, 2019, 5(4): 755-767. doi: 10.1016/j.eng.2019.02.003
[28] JIA M Y, YANG Z H, XU H Y, et al. Integrating N and F co-doped TiO2 nanotubes with ZIF-8 as photoelectrode for enhanced photo-electrocatalytic degradation of sulfamethazine [J]. Chemical Engineering Journal, 2020, 388: 124388. doi: 10.1016/j.cej.2020.124388
[29] OVEISI M, MAHMOODI N M, ASLI M A. Halogen lamp activated nanocomposites as nanoporous photocatalysts: Synthesis, characterization, and pollutant degradation mechanism [J]. Journal of Molecular Liquids, 2019, 281: 389-400. doi: 10.1016/j.molliq.2019.02.069
[30] WANG Z H, LAI C, QIN L, et al. ZIF-8-modified MnFe2O4 with high crystallinity and superior photo-Fenton catalytic activity by Zn-O-Fe structure for TC degradation [J]. Chemical Engineering Journal, 2020, 392: 124851. doi: 10.1016/j.cej.2020.124851
[31] FAN G D, LUO J, GUO L, et al. Doping Ag/AgCl in zeolitic imidazolate framework-8 (ZIF-8) to enhance the performance of photodegradation of methylene blue [J]. Chemosphere, 2018, 209: 44-52. doi: 10.1016/j.chemosphere.2018.06.036
[32] FAN G D, ZHENG X M, LUO J, et al. Rapid synthesis of Ag/AgCl@ZIF-8 as a highly efficient photocatalyst for degradation of acetaminophen under visible light [J]. Chemical Engineering Journal, 2018, 351: 782-790. doi: 10.1016/j.cej.2018.06.119
[33] QIU J H, ZHANG X F, ZHANG X G, et al. Constructing Cd0.5Zn0.5S@ZIF-8 nanocomposites through self-assembly strategy to enhance Cr(VI) photocatalytic reduction [J]. Journal of Hazardous Materials, 2018, 349: 234-241. doi: 10.1016/j.jhazmat.2018.02.009
[34] ISIMJAN T T, KAZEMIAN H, ROHANI S, et al. Photocatalytic activities of Pt/ZIF-8 loaded highly ordered TiO2 nanotubes [J]. Journal of Materials Chemistry, 2010, 20(45): 10241. doi: 10.1039/c0jm02152k
[35] LIU J X, LI R, HU Y Y, et al. Harnessing Ag nanofilm as an electrons transfer mediator for enhanced visible light photocatalytic performance of Ag@AgCl/Ag nanofilm/ZIF-8 photocatalyst [J]. Applied Catalysis B:Environmental, 2017, 202: 64-71. doi: 10.1016/j.apcatb.2016.09.015
[36] LIU J X, LI R, WANG Y F, et al. The active roles of ZIF-8 on the enhanced visible photocatalytic activity of Ag/AgCl: Generation of superoxide radical and adsorption [J]. Journal of Alloys and Compounds, 2017, 693: 543-549. doi: 10.1016/j.jallcom.2016.09.201
[37] DING Y H, ZHANG X L, ZHANG N, et al. A visible-light driven Bi2S3@ZIF-8 core–shell heterostructure and synergistic photocatalysis mechanism [J]. Dalton Transactions, 2018, 47(3): 684-692. doi: 10.1039/C7DT03256K
[38] MALIK A, NATH M. Multicore-shell nanocomposite formed by encapsulation of WO3 in zeolitic imidazolate framework (ZIF-8): As an efficient photocatalyst [J]. Journal of Environmental Chemical Engineering, 2019, 7(5): 103401. doi: 10.1016/j.jece.2019.103401
[39] ZENG X, HUANG L Q, WANG C N, et al. Sonocrystallization of ZIF-8 on electrostatic spinning TiO2 nanofibers surface with enhanced photocatalysis property through synergistic effect [J]. ACS Applied Materials & Interfaces, 2016, 8(31): 20274-20282.
[40] WANG X B, LIU J, LEONG S, et al. Rapid construction of ZnO@ZIF-8 heterostructures with size-selective photocatalysis properties [J]. ACS Applied Materials & Interfaces, 2016, 8(14): 9080-9087.
[41] ZHANG Y F, PARK S J. Facile construction of MoO3@ZIF-8 core-shell nanorods for efficient photoreduction of aqueous Cr (Ⅵ) [J]. Applied Catalysis B:Environmental, 2019, 240: 92-101. doi: 10.1016/j.apcatb.2018.08.077
[42] ZHANG Y F, PARK S J. Stabilization of dispersed CuPd bimetallic alloy nanoparticles on ZIF-8 for photoreduction of Cr(Ⅵ) in aqueous solution [J]. Chemical Engineering Journal, 2019, 369: 353-362. doi: 10.1016/j.cej.2019.03.083
[43] ZHAN Y F, LAN J W, SHANG J J, et al. Durable ZIF-8/Ag/AgCl/TiO2 decorated PAN nanofibers with high visible light photocatalytic and antibacterial activities for degradation of dyes [J]. Journal of Alloys and Compounds, 2020, 822: 153579. doi: 10.1016/j.jallcom.2019.153579
[44] ABDELHAMEED R M, ABU-ELGHAIT M, EL-SHAHAT M. Hybrid three MOFs composites (ZIF-67@ZIF-8@MIL-125-NH2): Enhancement the biological and visible-light photocatalytic activity [J]. Journal of Environmental Chemical Engineering, 2020, 8(5): 104107. doi: 10.1016/j.jece.2020.104107
[45] LIU A P, YU C, LIN J, et al. Construction of CuInS2@ZIF-8 nanocomposites with enhanced photocatalytic activity and durability [J]. Materials Research Bulletin, 2019, 112: 147-153. doi: 10.1016/j.materresbull.2018.12.020
[46] NAIMI JOUBANI M, ZANJANCHI M A, SOHRABNEZHAD S. The carboxylate magnetic - Zinc based metal-organic framework heterojunction: Fe3O4-COOH@ZIF-8/Ag/Ag3PO4 for plasmon enhanced visible light Z-scheme photocatalysis [J]. Advanced Powder Technology, 2020, 31(1): 29-39. doi: 10.1016/j.apt.2019.09.034
[47] YUAN D S, DING J, ZHOU J, et al. Graphite carbon nitride nanosheets decorated with ZIF-8 nanoparticles: Effects of the preparation method and their special hybrid structures on the photocatalytic performance [J]. Journal of Alloys and Compounds, 2018, 762: 98-108. doi: 10.1016/j.jallcom.2018.05.170
[48] HE Y M, ZENG L, FENG Z, et al. Preparation, characterization, and photocatalytic activity of novel AgBr/ZIF-8 composites for water purification [J]. Advanced Powder Technology, 2020, 31(1): 439-447. doi: 10.1016/j.apt.2019.11.002
[49] SIMON E, BRAUN M, VIDIC A, et al. Air pollution assessment based on elemental concentration of leaves tissue and foliage dust along an urbanization gradient in Vienna [J]. Environmental Pollution, 2011, 159(5): 1229-1233. doi: 10.1016/j.envpol.2011.01.034
[50] HE B, YUN Z J, SHI J B, et al. Research progress of heavy metal pollution in China: Sources, analytical methods, status, and toxicity [J]. Chinese Science Bulletin, 2013, 58(2): 134-140. doi: 10.1007/s11434-012-5541-0
[51] RAKHUNDE R, DESHPANDE L, JUNEJA H D. Chemical speciation of chromium in water: A review [J]. Critical Reviews in Environmental Science and Technology, 2012, 42(7): 776-810. doi: 10.1080/10643389.2010.534029
[52] EL-TAWEEL Y A, NASSEF E M, ELKHERIANY I, et al. Removal of Cr(Ⅵ) ions from waste water by electrocoagulation using iron electrode [J]. Egyptian Journal of Petroleum, 2015, 24(2): 183-192. doi: 10.1016/j.ejpe.2015.05.011
[53] WU L, FU H F, WEI Q, et al. Porous Cd0. 5Zn0. 5S nanocages derived from ZIF-8: Boosted photocatalytic performances under LED-visible light [J]. Environmental Science and Pollution Research, 2021, 28(5): 5218-5230. doi: 10.1007/s11356-020-10812-1
[54] RENGARAJ S, VENKATARAJ S, YEON J W, et al. Preparation, characterization and application of Nd-TiO2 photocatalyst for the reduction of Cr(VI) under UV light illumination [J]. Applied Catalysis B:Environmental, 2007, 77(1/2): 157-165.
[55] KHAN S, MALIK A. Environmental and health effects of textile industry wastewater-Environmental deterioration and human health [M]. Springer, 2014: 55-71. DOI:10.1007/978-94-007-7890-0_4.
[56] AHMED A, FORSTER M, JIN J S, et al. Tuning morphology of nanostructured ZIF-8 on silica microspheres and applications in liquid chromatography and dye degradation [J]. ACS Applied Materials & Interfaces, 2015, 7(32): 18054-18063.
[57] GRUNG M, LIN Y, ZHANG H, et al. Pesticide levels and environmental risk in aquatic environments in China—A review [J]. Environment International, 2015, 81: 87-97. doi: 10.1016/j.envint.2015.04.013
[58] SHENG J J, WANG X P, GONG P, et al. Monsoon-driven transport of organochlorine pesticides and polychlorinated biphenyls to the Tibetan Plateau: Three year atmospheric monitoring study [J]. Environmental Science & Technology, 2013, 47(7): 3199-3208.
[59] LU Y L, SONG S, WANG R S, et al. Impacts of soil and water pollution on food safety and health risks in China [J]. Environment International, 2015, 77: 5-15. doi: 10.1016/j.envint.2014.12.010
[60] YANG Y, OK Y S, KIM K H, et al. Occurrences and removal of pharmaceuticals and personal care products (PPCPs) in drinking water and water/sewage treatment plants: A review [J]. Science of the Total Environment, 2017, 596/597: 303-320. doi: 10.1016/j.scitotenv.2017.04.102
[61] LIU J L, WONG M H. Pharmaceuticals and personal care products (PPCPs): A review on environmental contamination in China [J]. Environment International, 2013, 59: 208-224. doi: 10.1016/j.envint.2013.06.012
[62] LI Y W, WU X L, MO C H, et al. Investigation of sulfonamide, tetracycline, and quinolone antibiotics in vegetable farmland soil in the Pearl River Delta area, Southern China [J]. Journal of Agricultural and Food Chemistry, 2011, 59(13): 7268-7276. doi: 10.1021/jf1047578