[1] 顾平, 武耘羽, 刘阳, 等. 废水中除铜研究的最新进展 [J]. 工业水处理, 2017, 37(5): 1-5. doi: 10.11894/1005-829x.2017.37(5).001 GU P, WU Y Y, LIU Y, et al. Latest research progress in the removal of copper from waste water [J]. Industrial Water Treatment, 2017, 37(5): 1-5(in Chinese). doi: 10.11894/1005-829x.2017.37(5).001
[2] BANG S, CHOI J W, CHO K, et al. Simultaneous reduction of copper and toxicity in semiconductor wastewater using protonated alginate beads [J]. Chemical Engineering Journal, 2015, 288: 525-531.
[3] FU F L, WANG Q. Removal of heavy metal ions from wastewaters: A review [J]. Journal of Environmental Management, 2011, 92(3): 407-418. doi: 10.1016/j.jenvman.2010.11.011
[4] M NDEZ-D AZ J D, PRADOS-JOYA G, RIVERA-UTRILLA J, et al. Kinetic study of the adsorption of nitroimidazole antibiotics on activated carbons in aqueous phase [J]. Journal of Colloid and Interface Science, 2010, 345(2): 481-490. doi: 10.1016/j.jcis.2010.01.089
[5] LEHMANN J, RILLIG M C, THIES J, et al. Biochar effects on soil biota – A review [J]. Soil Biology and Biochemistry, 2011, 43(9): 1812-1836. doi: 10.1016/j.soilbio.2011.04.022
[6] 佟雪娇. 生物质炭对水体/红壤中Cu(Ⅱ)的去除和固定作用[D]. 南京: 南京农业大学, 2011. TONG X J. Removal of Cu(Ⅱ)from aqueous solutions and its fixation in red soil by biochars from crop straws[D]. Nanjing: Nanjing Agricultural University, 2011(in Chinese).
[7] CHEN X C, CHEN G C, CHEN L G, et al. Adsorption of copper and zinc by biochars produced from pyrolysis of hardwood and corn straw in aqueous solution [J]. Bioresource Technology, 2011, 102(19): 8877-8884. doi: 10.1016/j.biortech.2011.06.078
[8] 尹英杰, 朱司航, 徐东昊, 等. 生物炭和乙醇改性生物炭对铜的吸附研究 [J]. 农业环境科学学报, 2017, 36(9): 1877-1883. doi: 10.11654/jaes.2017-0269 YIN Y J, ZHU S H, XU D H, et al. Comparison of copper adsorption onto wheat biochar and ethanol-modified biochar [J]. Journal of Agro-Environment Science, 2017, 36(9): 1877-1883(in Chinese). doi: 10.11654/jaes.2017-0269
[9] PARK J H, OK Y S, KIM S H, et al. Competitive adsorption of heavy metals onto sesame straw biochar in aqueous solutions [J]. Chemosphere, 2016, 142: 77-83. doi: 10.1016/j.chemosphere.2015.05.093
[10] MEI Y L, LI B, FAN S S. Biochar from rice straw for Cu2+ removal from aqueous solutions: Mechanism and contribution made by acid-soluble minerals [J]. Water, Air, & Soil Pollution, 2020, 231(8): 1-13.
[11] 周沈格颖. 秸秆生物质炭吸附处理含铜废水研究[D]. 温州: 温州大学, 2018. ZHOU S G Y. Study on adsorption treatment of Cu(Ⅱ) by rice straw-derived biochar from wastewater[D]. Wenzhou, China: Wenzhou University, 2018 (in Chinese).
[12] DENG J, LI X, WEI X, et al. Sulfamic acid modified hydrochar derived from sawdust for removal of benzotriazole and Cu(II) from aqueous solution: Adsorption behavior and mechanism [J]. Bioresource Technology, 2019, 290: 121765. doi: 10.1016/j.biortech.2019.121765
[13] GAO Y, ZHU X Z, YUE Q Y, et al. Facile one-step synthesis of functionalized biochar from sustainable prolifera-green-tide source for enhanced adsorption of copper ions [J]. Journal of Environmental Sciences (China), 2018, 73: 185-194. doi: 10.1016/j.jes.2018.02.012
[14] SON E B, POO K M, CHANG J S, et al. Heavy metal removal from aqueous solutions using engineered magnetic biochars derived from waste marine macro-algal biomass [J]. The Science of the Total Environment, 2018, 615: 161-168. doi: 10.1016/j.scitotenv.2017.09.171
[15] ZHOU Q, LIAO B, LIN L, et al. Adsorption of Cu(Ⅱ) and Cd(Ⅱ) from aqueous solutions by ferromanganese binary oxide-biochar composites [J]. Science of the Total Environment, 2018, 615(FEBa15): 115-122.
[16] WEN R, YUAN B, WANG Y, et al. Improving Cu(Ⅱ) sorption by biochar via pyrolyzation under CO2: The importance of inherent inorganic species [J]. Environmental Science and Pollution Research, 2018, 25(6): 5105-5114. doi: 10.1007/s11356-017-9753-3
[17] WANG Y Y, LIU Y X, LU H H, et al. Competitive adsorption of Pb(Ⅱ), Cu(Ⅱ), and Zn(Ⅱ) ions onto hydroxyapatite-biochar nanocomposite in aqueous solutions [J]. Journal of Solid State Chemistry, 2018, 261: 53-61. doi: 10.1016/j.jssc.2018.02.010
[18] LIAN F, CUI G N, LIU Z Q, et al. One-step synthesis of a novel N-doped microporous biochar derived from crop straws with high dye adsorption capacity [J]. Journal of Environmental Management, 2016, 176: 61-68. doi: 10.1016/j.jenvman.2016.03.043
[19] YANG G X, JIANG H. Amino modification of biochar for enhanced adsorption of copper ions from synthetic wastewater [J]. Water Research, 2014, 48: 396-405. doi: 10.1016/j.watres.2013.09.050
[20] 侯素珍, 田浩然, 黄超, 等. 氨基改性生物炭负载纳米零价铁去除水中Cr(Ⅵ) [J]. 环境科学学报, 2020, 40(11): 3931-3938. HOU S Z, TIAN H R, HUANG C, et al. Removal of Cr (Ⅵ) from aqueous solution by amino-modified biochar supported nano zero-valent iron [J]. Acta Scientiae Circumstantiae, 2020, 40(11): 3931-3938(in Chinese).
[21] ZHAHG J J, SHAO J G, HUANG D R, et al. Influence of different precursors on the characteristic of nitrogen-enriched biochar and SO2 adsorption properties [J]. Chemical Engineering Journal, 2020, 285: 123932.
[22] LI W, ZHANG L, GUAN Y, et al. A Slow pyrolysis biochar derived from tetrapanax papyriferum petiole as an effective sorbent for removing copper ions from aqueous solution [J]. Bioresources, 2019, 14(2): 4430-4453. doi: 10.15376/biores.14.2.4430-4453
[23] LI M, LIU Q, GUO L, et al. Cu(Ⅱ) removal from aqueous solution by Spartina alterniflora derived biochar [J]. Bioresource Technology, 2013, 141: 83-88. doi: 10.1016/j.biortech.2012.12.096
[24] SHIM T, YOO J, RYU C, et al. Effect of steam activation of biochar produced from a giant Miscanthus on copper sorption and toxicity [J]. Bioresource Technology, 2015, 197: 85-90. doi: 10.1016/j.biortech.2015.08.055
[25] DUAN X, O'DONNELL K, SUN H, et al. Sulfur and nitrogen co-doped graphene for metal-free catalytic oxidation reactions [J]. Small, 2015, 11(25): 3036-3044. doi: 10.1002/smll.201403715
[26] LIU S, ZHAO C, WANG Z, et al. Urea-assisted one-step fabrication of a novel nitrogen-doped carbon fiber aerogel from cotton as metal-free catalyst in peroxymonosulfate activation for efficient degradation of carbamazepine [J]. Chemical Engineering Journal, 2020, 386: 124015. doi: 10.1016/j.cej.2020.124015
[27] 王淑娟. 氨基磁化生物炭对水中铅、铜、铀的吸附性能研究[D]. 北京: 华北电力大学(北京), 2018. WANG S J. The removai of lead, copper and uranium by amnino modified magnetic biochar from aquecus solutions[D]. Beijing: North China Electric Power University, 2018(in Chinese).
[28] WU W, YANG M, FENG Q, et al. Chemical characterization of rice straw-derived biochar for soil amendment [J]. Biomass and Bioenergy, 2012, 47: 268-276. doi: 10.1016/j.biombioe.2012.09.034
[29] XU L, WU CX, LIU PH, et al. Peroxymonosulfate activation by nitrogen-doped biochar from sawdust for the efficient degradation of organic pollutants [J]. Chemical Engineering Journal, 2020, 387: 124056. doi: 10.1016/j.cej.2020.124056
[30] LI D P, ZHAO L, CAO X D, et al. Nickel-catalyzed formation of mesoporous carbon structure promoted capacitive performance of exhausted biochar [J]. Chemical Engineering Journal, 2021, 406: 126856. doi: 10.1016/j.cej.2020.126856
[31] XIAO X, CHEN B L, ZHU L Z. Transformation, morphology, and dissolution of silicon and carbon in rice straw-derived biochars under different pyrolytic temperatures [J]. Environmental Science & Technology, 2014, 48(6): 3411-3419.
[32] LENG L J, XU S Y, LIU R F, et al. Nitrogen containing functional groups of biochar: An overview [J]. Bioresource Technology, 2020, 298: 122286. doi: 10.1016/j.biortech.2019.122286
[33] SHAFEEYAN M S, DAUD W, HOUSHMAND A, et al. A review on surface modification of activated carbon for carbon dioxide adsorption [J]. Journal of Analytical and Applied Pyrolysis, 2010, 89: 143-151. doi: 10.1016/j.jaap.2010.07.006
[34] SHAFEEYAN M S, DAUD W, HOUSHMAND A, et al. Ammonia modification of activated carbon to enhance carbon dioxide adsorption: Effect of pre-oxidation', Applied Surface Science, 2011, 257: 3936-3942.
[35] WANG D H, HUI S E, LIU C C. Mass loss and evolved gas analysis in thermal decomposition of solid urea [J]. Fuel, 2017, 207: 268-273. doi: 10.1016/j.fuel.2017.06.117
[36] 吴晴雯, 孟梁, 张志豪, 等. 芦苇秸秆生物炭对水体中重金属Ni2+的吸附特性 [J]. 环境化学, 2015, 34(9): 1703-1709. doi: 10.7524/j.issn.0254-6108.2015.09.2015031108 WU Q W, MENG L, ZHANG Z H, et al. Adsorption behaviors of Ni2+onto reed straw biochar in the aquatic solutions [J]. Environmental Chemistry, 2015, 34(9): 1703-1709(in Chinese). doi: 10.7524/j.issn.0254-6108.2015.09.2015031108
[37] 黄柱坚, 朱子骜, 吴学深, 等. 皇竹草生物炭的结构特征及对重金属吸附作用机制 [J]. 环境化学, 2016, 35(4): 766-772. HUANG Z J, ZHU Z A, WU X S, et al. Adsorption of heavy metals by biochar derived from Pennisetum sinese Roxb [J]. Environmental Chemistry, 2016, 35(4): 766-772(in Chinese).
[38] 范世锁, 刘文浦, 王锦涛, 等. 茶渣生物炭制备及其对溶液中四环素的去除特性 [J]. 环境科学, 2020, 41(3): 1308-1318. FAN S S, LIU W P, WANG J T, et al. Preparation of tea waste biochar and its application in tetracycline removal from aqueous solution [J]. Environmental Science, 2020, 41(3): 1308-1318(in Chinese).
[39] SEPULVEDA L A, SANTANA C C. Effect of solution temperature, pH and ionic strength on dye adsorption onto Magellanic peat [J]. Environmental Technology, 2013, 34(8): 967-977. doi: 10.1080/09593330.2012.724251
[40] 吴志坚, 刘海宁, 张慧芳. 离子强度对吸附影响机理的研究进展 [J]. 环境化学, 2010, 29(6): 997-1003. WU Z J, LIU H N, ZHANG H F. Research progress on mechanisms about the effect of ionic strength on adsorption [J]. Environmental Chemistry, 2010, 29(6): 997-1003(in Chinese).
[41] CAMPINAS M, ROSA M J. The ionic strength effect on microcystin and natural organic matter surrogate adsorption onto PAC [J]. Journal of Colloid and Interface Science, 2006, 299(2): 520-529. doi: 10.1016/j.jcis.2006.02.042
[42] 陈尚龙. ATRP法制备羧基化生物吸附剂及其对重金属离子的吸附[D]. 徐州: 中国矿业大学(江苏), 2020. CHEN S L. Preparation of carboxylated biosorbents via atom transfer radical polymerization for adsorption of heavy metal ions[D]. Xuzhou: China University of Mining and Technology, 2020(in Chinese).
[43] 宋泽峰, 石晓倩, 刘卓, 等. 芦苇生物炭的制备、表征及其吸附铜离子与双酚A的性能 [J]. 环境化学, 2020, 39(8): 2196-2205. SONG Z F, SHI X Q, LIU Z, et al. Synthesis and characterization of reed-based biochar and its adsorption properties for Cu2+ and bisphenol A ( BPA) [J]. Environmental Chemistry, 2020, 39(8): 2196-2205(in Chinese).
[44] JIANG J, PENG Y, YUAN M, et al. Rice straw-derived biochar properties and functions as Cu(Ⅱ) and cyromazine sorbents as influenced by pyrolysis temperature [J]. An International Journal Pedosphere, 2015, 25(5): 781-789. doi: 10.1016/S1002-0160(15)30059-X
[45] HO Y, MCKAY G. Pseudo-second order model for sorption processes [J]. Process Biochemistry, 1999, 34(5): 451-465. doi: 10.1016/S0032-9592(98)00112-5
[46] INYANG M I, GAO B, YAO Y, et al. A review of biochar as a low-cost adsorbent for aqueous heavy metal removal [J]. Critical Reviews in Environmental Science and Technology, 2016, 46(4): 406-433. doi: 10.1080/10643389.2015.1096880
[47] TANG S, SHAO N, ZHENG C, et al. Amino-functionalized sewage sludge-derived biochar as sustainable efficient adsorbent for Cu(Ⅱ) removal [J]. Waste Management, 2019, 90(MAY): 17-28.