[1] |
DEMAIN A. L, SANCHEZ S. Microbial drug discovery: 80 years of progress [J]. The Journal of Antibiotics, 2009, 62: 5-16. doi: 10.1038/ja.2008.16
|
[2] |
MARTINEZ J. L. Environmental pollution by antibiotics and by antibiotic resistance determinants [J]. Environmental Pollution, 2009, 157: 2893-2902. doi: 10.1016/j.envpol.2009.05.051
|
[3] |
NISHA A R. Antibiotic Residues - A Global Health Hazard [J]. Veterinary World, 2008, 1(12): 375-377.
|
[4] |
FOCAZIO M. J, KOLPIN D. W, BARNES K. K, et al. A national reconnaissance for pharmaceuticals and other organic wastewater contaminants in the United States — II) Untreated drinking water sources [J]. Science of The Total Environment, 2008, 402: 201-216. doi: 10.1016/j.scitotenv.2008.02.021
|
[5] |
CHEN W R, DING Y, JOHNSTON C. Johnston, et al. Reaction of Lincosamide Antibiotics with Manganese Oxide in Aqueous Solution [J]. Environmental Science & Technology, 2010, 44: 4486-4492.
|
[6] |
XU Y, GUO C, LUO Y, et al. Occurrence and distribution of antibiotics, antibiotic resistance genes in the urban rivers in Beijing [J]. China Environmental Pollution, 2016, 213: 833-840. doi: 10.1016/j.envpol.2016.03.054
|
[7] |
SZEKERES E, CHIRIAC C M, BARICZ A, et al. Investigating antibiotics, antibiotic resistance genes, and microbial contaminants in groundwater in relation to the proximity of urban areas [J]. Environment Pollution, 2018, 236: 734-744. doi: 10.1016/j.envpol.2018.01.107
|
[8] |
DANNER M C, ROBERTSON A, BEBRENDS V, et al. Antibiotic pollution in surface fresh waters: Occurrence and effects [J]. Science of The Total Environment, 2019, 664C: 793-804.
|
[9] |
GERQUEIRA F, MATAMOROS V, BAYONA J, et al. Distribution of antibiotic resistance genes in soils and crops. A field study in legume plants (Vicia faba L. ) grown under different watering regimes [J]. Environmental Research, 2019, 170: 16-25. doi: 10.1016/j.envres.2018.12.007
|
[10] |
SANGANYADO E, GWENZI W. Antibiotic resistance in drinking water systems: Occurrence, removal, and human health risks [J]. Science of Total Environment, 2019, 669: 785-797. doi: 10.1016/j.scitotenv.2019.03.162
|
[11] |
KUNNERER K. Antibiotics in the aquatic environment – A review – Part II [J]. Chemosphere, 2009, 75: 435-441. doi: 10.1016/j.chemosphere.2008.12.006
|
[12] |
FLANAGAN J, GRIFFITH W, SKAPSKI A. The active principle of Caro's acid, HSO5–: X-ray crystal structure of KHSO5·H2O [J]. J. Chem. Soc. , Chem. Commun, 1984, 23: 1574-1575.
|
[13] |
KOLTHOFF I, MILLER K. The chemistry of persulfate. I. The kinetics and mechanism of the decomposition of the persulfate ion in aqueous medium1 [J]. Journal of the American Chemical Society, 1951, 73(7): 1-30.
|
[14] |
WANG J, WANG S. Activation of persulfate (PS) and peroxymonosulfate (PMS) and application for the degradation of emerging contaminants [J]. Chemical Engineering Journal, 2018, 334: 1502-1517. doi: 10.1016/j.cej.2017.11.059
|
[15] |
TSITONAKI A, PETRI B, CRIMI M, et al. In situ chemical oxidation of contaminated soil and groundwater using persulfate: A review [J]. Critical Reviews in Environmental Science and Technology, 2010, 40: 55-91. doi: 10.1080/10643380802039303
|
[16] |
YANG Q, MA Y, CHEN F, et al. Recent advances in photo-activated sulfate radical-advanced oxidation process (SR-AOP) for refractory organic pollutants removal in water [J]. Chemical Engineering Journal, 2019, 378: 122-149.
|
[17] |
MALATO S, FERNANDEZ-IBANEZ P, MALDONADO M I, et al. Decontamination and disinfection of water by solar photocatalysis: Recent overview and trends [J]. Catalysis Today, 2009, 147: 1-59. doi: 10.1016/j.cattod.2009.06.018
|
[18] |
MAURINO V, CALZA P, MINERO C, et al. Light-assisted 1, 4-dioxane degradation [J]. Chemosphere, 1997, 35: 2675-2688. doi: 10.1016/S0045-6535(97)00322-6
|
[19] |
ZHOU X, LIU D, ZHANG Y, et al. Degradation mechanism and kinetic modeling for UV/peroxydisulfate treatment of penicillin antibiotics [J]. Chemical Engineering Journal, 2018, 341: 93-101. doi: 10.1016/j.cej.2018.01.137
|
[20] |
YE J S, LIU J, OU H S, WANG L. Degradation of ciprofloxacin by 280 nm ultraviolet-activated persulfate: Degradation pathway and intermediate impact on proteome of Escherichia coli [J]. Chemosphere, 2016, 165: 311-319. doi: 10.1016/j.chemosphere.2016.09.031
|
[21] |
CUI C, JIN L, JIANG L, et al. Removal of trace level amounts of twelve sulfonamides from drinking water by UV-activated peroxymonosulfate [J]. Science of The Total Environment, 2016, 572: 244-251. doi: 10.1016/j.scitotenv.2016.07.183
|
[22] |
SERNA-GALVIS E, FERRARO F, SILVA-AGREDO J, et al. Degradation of highly consumed fluoroquinolones, penicillins and cephalosporins in distilled water and simulated hospital wastewater by UV 254 and UV 254/persulfate processes[J]. Water Research, 122(1): 128-138.
|
[23] |
ZHANG Y, LI L, PAN Z, et al. Degradation of sulfamethoxazole by UV/persulfate in different water samples: Influential factors, transformation products and toxicity [J]. Chemical Engineering Journal, 2019, 379: 122354.
|
[24] |
ZHU Y, WEI M, PAN Z, et al. Ultraviolet/peroxydisulfate degradation of ofloxacin in seawater: Kinetics, mechanism and toxicity of products [J]. Science of The Total Environment, 2020, 705: 135960. doi: 10.1016/j.scitotenv.2019.135960
|
[25] |
GAO Y Q, GAO N Y, DENG Y, et al. Ultraviolet (UV) light-activated persulfate oxidation of sulfamethazine in water [J]. Chemical Engineering Journal, 2012, 195/196: 248-253. doi: 10.1016/j.cej.2012.04.084
|
[26] |
YANG Y, LU X, JIANG J, et al. Degradation of sulfamethoxazole by UV, UV/H2O2 and UV/persulfate (PDS): Formation of oxidation products and effect of bicarbonate [J]. Water Research, 2017, 118: 196-207. doi: 10.1016/j.watres.2017.03.054
|
[27] |
GHAUCH A, BAALBAKI A, AMASHA M, et al. Contribution of persulfate in UV-254nm activated systems for complete degradation of chloramphenicol antibiotic in water [J]. Chemical Engineering Journal, 2017, 317: 1012-1025. doi: 10.1016/j.cej.2017.02.133
|
[28] |
MAHDI-AHMED M, CHIRON S. Ciprofloxacin oxidation by UV-C activated peroxymonosulfate in wastewater [J]. Journal of Hazardous Materials, 2014, 265: 41-46. doi: 10.1016/j.jhazmat.2013.11.034
|
[29] |
WANG F, WANG W, YUAN S, et al. Comparison of UV/H2O2 and UV/PS processes for the degradation of thiamphenicol in aqueous solution [J]. Journal of Photochemistry and Photobiology A:Chemistry, 2017, 348: 79-88. doi: 10.1016/j.jphotochem.2017.08.023
|
[30] |
XUE H, GAO S, ZHENG N, et al. Degradation of norfloxacin in aqueous solution with UV/peroxydisulfate [J]. Water Science and Technology, 2019, 79: 2387-2394. doi: 10.2166/wst.2019.240
|
[31] |
ZHAO D, LIAO X, YAN X, et al. Effect and mechanism of persulfate activated by different methods for PAHs removal in soil [J]. Journal of Hazardous Materials, 2013, 254/255: 228-235. doi: 10.1016/j.jhazmat.2013.03.056
|
[32] |
JI Y, SHI Y, DONG W, et al. Thermo-activated persulfate oxidation system for tetracycline antibiotics degradation in aqueous solution [J]. Chemical Engineering Journal, 2016, 298: 225-233. doi: 10.1016/j.cej.2016.04.028
|
[33] |
QIAN Y, LIU X, LI K, et al. Enhanced degradation of cephalosporin antibiotics by matrix components during thermally activated persulfate oxidation process [J]. Chemical Engineering Journal, 2019, 384: 123332.
|
[34] |
FAN Y, JI Y, KONG D, et al. Kinetic and mechanistic investigations of the degradation of sulfamethazine in heat-activated persulfate oxidation process [J]. Journal of Hazardous Materials, 2015, 300: 39-47. doi: 10.1016/j.jhazmat.2015.06.058
|
[35] |
NIE M, YANG Y, ZHANG Z, et al. Degradation of chloramphenicol by thermally activated persulfate in aqueous solution [J]. Chemical Engineering Journal, 2014, 246: 373-382. doi: 10.1016/j.cej.2014.02.047
|
[36] |
YANG J F, YANG L M, ZHANG S B, et al. Degradation of azole fungicide fluconazole in aqueous solution by thermally activated persulfate [J]. Chemical Engineering Journal, 2017, 321: 113-122. doi: 10.1016/j.cej.2017.03.103
|
[37] |
李轶涵, 姜恬, 周旭, 等. 热活化过硫酸盐氧化降解水溶液中的抗生素卡巴多司和奥喹多司 [J]. 环境科学学报, 2019, 39: 3821-3831.
LI Y H, JIANG T, ZHOU X, et al. Thermally activated persulfate oxidation of antibiotics carbadox and olaquindox in aqueous solution [J]. Acta Scientiae Circumstantiae, 2019, 39: 3821-3831(in Chinese).
|
[38] |
NORZAEE S, TAGHAVI M, DJAHED B, et al. Degradation of penicillin G by heat activated persulfate in aqueous solution [J]. Journal of Environmental Management, 2018, 215: 316-323.
|
[39] |
QIAN Y, XUE G, CHEN J, et al. Oxidation of cefalexin by thermally activated persulfate: Kinetics, products, and antibacterial activity change [J]. Journal of Hazardous Materials, 2018, 354: 153-160. doi: 10.1016/j.jhazmat.2018.05.004
|
[40] |
JIANG C, JI Y, SHI Y, et al. Sulfate radical-based oxidation of fluoroquinolone antibiotics: Kinetics, mechanisms and effects of natural water matrices [J]. Water Research, 2016, 106: 507-517. doi: 10.1016/j.watres.2016.10.025
|
[41] |
LUO T, WAN J, MA Y, et al. Sulfamethoxazole degradation by Fe(II)-activated persulfate process: Insight into the reactive sites, products identification and degradation pathways [J]. Environmental Science:Processes & Impacts, 2019: 21.
|
[42] |
JI Y, FERRONATO C, SALVADOR A, et al. Degradation of ciprofloxacin and sulfamethoxazole by ferrous-activated persulfate: Implications for remediation of groundwater contaminated by antibiotics [J]. Science of The Total Environment, 2014, 472: 800-808. doi: 10.1016/j.scitotenv.2013.11.008
|
[43] |
MATTA R, YOUNES H, HANNA R, et al. Sulfate radicals mediated oxidation of amoxicillin: Optimization of key parameters [J]. Journal of Environmental Management, 2019, 245: 375-383. doi: 10.1016/j.jenvman.2019.05.030
|
[44] |
DING Y, TANG H, ZHANG S, et al. Efficient degradation of carbamazepine by easily recyclable microscaled CuFeO2 mediated heterogeneous activation of peroxymonosulfate [J]. Journal of Hazardous Materials, 2016, 317: 686-694. doi: 10.1016/j.jhazmat.2016.06.004
|
[45] |
HU P, LONG M. Cobalt-catalyzed sulfate radical-based advanced oxidation: A review on heterogeneous catalysts and applications [J]. Applied Catalysis B:Environmental, 2016, 181: 103-117. doi: 10.1016/j.apcatb.2015.07.024
|
[46] |
ZHANG H, SONG Y, NENGZI L C, et al. Activation of persulfate by a novel magnetic CuFe2O4/Bi2O3 composite for lomefloxacin degradation [J]. Chemical Engineering Journal, 2019, 379: 122362.
|
[47] |
ZHANG H, WANG J, ZHANG X, et al. Enhanced removal of lomefloxacin based on peroxymonosulfate activation by Co3O4/δ-FeOOH composite [J]. Chemical Engineering Journal, 2019, 369: 834-844. doi: 10.1016/j.cej.2019.03.132
|
[48] |
CHEN L, ZUO X, ZHOU L, et al. Efficient heterogeneous activation of peroxymonosulfate by facilely prepared Co/Fe bimetallic oxides: Kinetics and mechanism [J]. Chemical Engineering Journal, 2018, 345: 364-374. doi: 10.1016/j.cej.2018.03.169
|
[49] |
LI Z, GUO C, LYU J, et al. Tetracycline degradation by persulfate activated with magnetic Cu/CuFe2O4 composite: Efficiency, stability, mechanism and degradation pathway [J]. Journal of Hazardous Materials, 2019, 373: 85-96. doi: 10.1016/j.jhazmat.2019.03.075
|
[50] |
GUAN R, YUAN X, WU Z, et al. Accelerated tetracycline degradation by persulfate activated with heterogeneous magnetic NixFe3−xO4 catalysts [J]. Chemical Engineering Journal, 2018, 350: 573-584. doi: 10.1016/j.cej.2018.05.195
|
[51] |
FENG Y, LIAO C, LI H, et al. Cu2O-promoted degradation of sulfamethoxazole by α-Fe2O3-catalyzed peroxymonosulfate under circumneutral conditions: synergistic effect, Cu/Fe ratios, and mechanisms [J]. Environmental Technology, 2018, 39: 1-11. doi: 10.1080/09593330.2017.1293164
|
[52] |
JIANG S, ZHU J, WANG Z, et al. Efficiency and mechanism of ciprofloxacin hydrochloride degradation in wastewater by Fe3O4 /Na2S2O8 [J]. Ozone:Science & Engineering, 2018, 40: 1-8.
|
[53] |
CHEN C, LIU L, LI Y, et al. Insight into heterogeneous catalytic degradation of sulfamethazine by peroxymonosulfate activated with CuCo2O4 derived from bimetallic oxalate [J]. Chemical Engineering Journal, 2020, 384: 123257. doi: 10.1016/j.cej.2019.123257
|
[54] |
LI W, WU Y, GAO Y, et al. Mechanism of persulfate activation with CuO for removing cephalexin and ofloxacin in water [J]. Research on Chemical Intermediates, 2019, 45: 5549-5558. doi: 10.1007/s11164-019-03919-9
|
[55] |
WANG Y, TIAN D, CHU W, et al. Nanoscaled magnetic CuFe2O4 as an activator of peroxymonosulfate for the degradation of antibiotics norfloxacin [J]. Separation and Purification Technology, 2019, 212: 536-544. doi: 10.1016/j.seppur.2018.11.051
|
[56] |
WANG Q, SHAO Y, GAO N, et al. Activation of peroxymonosulfate by Al2O3-based CoFe2O4 for the degradation of sulfachloropyridazine sodium: Kinetics and mechanism [J]. Separation and Purification Technology, 2017, 189: 176-185. doi: 10.1016/j.seppur.2017.07.046
|
[57] |
LI R, JIN X, MEGHARAI M, et al. Heterogeneous Fenton oxidation of 2, 4-dichlorophenol using iron-based nanoparticles and persulfate system [J]. Chemical Engineering Journal, 2015, 264: 587-594. doi: 10.1016/j.cej.2014.11.128
|
[58] |
GAO J, LAI L, LAI B, et al. Degradation of tetracycline by peroxymonosulfate activated with zero-valent iron: Performance, intermediates, toxicity and mechanism [J]. Chemical Engineering Journal, 2019, 364: 45-56. doi: 10.1016/j.cej.2019.01.113
|
[59] |
YE Q, XU H, ZHANG J, et al. Enhancement of peroxymonosulfate activation for antibiotics removal by nano zero valent tungsten induced Cu(II)/Cu(I) redox cycles [J]. Chemical Engineering Journal, 2020, 382: 123054. doi: 10.1016/j.cej.2019.123054
|
[60] |
PULICHARLA R, DROUINAUD R, BRAR S K, et al. Activation of persulfate by homogeneous and heterogeneous iron catalyst to degrade chlortetracycline in aqueous solution [J]. Chemosphere, 2018, 207: 543-551. doi: 10.1016/j.chemosphere.2018.05.134
|
[61] |
DENG J, XU M, CHEN Y, et al. Highly-efficient removal of norfloxacin with nanoscale zero-valent copper activated persulfate at mild temperature [J]. Chemical Engineering Journal, 2019, 366: 491-503. doi: 10.1016/j.cej.2019.02.073
|
[62] |
SHAH N S, KHAN J A, SAYED M, et al. Hydroxyl and sulfate radical mediated degradation of ciprofloxacin using nano zerovalent manganese catalyzed S2O82− [J]. Chemical Engineering Journal, 2019, 356: 199-209. doi: 10.1016/j.cej.2018.09.009
|
[63] |
OLMEZ-HANCI T, ARSLAN-ALATON I, DOAN M, et al. Enhanced degradation of micropollutants by zero-valent aluminum activated persulfate: Assessment of toxicity and genotoxic activity [J]. Water Science and Technology, 2017, 76: 2017489.
|
[64] |
CHAOQUN T, DONG Y, FU D, et al. Chloramphenicol removal by zero valent iron activated peroxymonosulfate system: Kinetics and mechanism of radical generation [J]. Chemical Engineering Journal, 2017, 334: 1006-1015.
|
[65] |
YANG S, CHE D. Degradation of aquatic sulfadiazine by Fe0/persulfate: Kinetics, mechanisms, and degradation pathway [J]. RSC Advances, 2017, 7: 42233-42241. doi: 10.1039/C7RA07920F
|
[66] |
REN X, CHEN C, NAGATSU M, et al. Carbon nanotubes as adsorbents in environmental pollution management: A review [J]. Chemical Engineering Journal, 2011, 170: 395-410. doi: 10.1016/j.cej.2010.08.045
|
[67] |
REN W, XIONG L, YUAN X, et al. Activation of peroxydisulfate on carbon nanotubes: electron-transfer mechanism [J]. Environmental Science & Technology, 2019, 53: 14595-14603.
|
[68] |
SUN H, KWAN C, SUVOROVA A, et al. Catalytic oxidation of organic pollutants on pristine and surface nitrogen-modified carbon nanotubes with sulfate radicals [J]. Applied Catalysis B:Environmental, 2014, 154/155: 134-141. doi: 10.1016/j.apcatb.2014.02.012
|
[69] |
KANG J, DUAN X, ZHOU L, et al. Carbocatalytic activation of persulfate for removal of antibiotics in water solutions [J]. Chemical Engineering Journal, 2016, 288: 399-405. doi: 10.1016/j.cej.2015.12.040
|
[70] |
FOROUZESH M, EBADI A, AGHAEINEJAD-MEYBODI A. Degradation of metronidazole antibiotic in aqueous medium using activated carbon as a persulfate activator [J]. Separation and Purification Technology, 2019, 210: 145-151. doi: 10.1016/j.seppur.2018.07.066
|
[71] |
SHANG Y, CHEN C, ZHANG P, et al. Removal of sulfamethoxazole from water via activation of persulfate by Fe3C@NCNTs including mechanism of radical and nonradical process [J]. Chemical Engineering Journal, 2019, 375: 122004. doi: 10.1016/j.cej.2019.122004
|
[72] |
NGUYEN V T, NGUYEN T B, CHEN C W, et al. Cobalt-impregnated biochar (Co-SCG) for heterogeneous activation of peroxymonosulfate for removal of tetracycline in water [J]. Bioresource Technology, 2019, 292: 121954. doi: 10.1016/j.biortech.2019.121954
|
[73] |
JIANG X, GUO Y, ZHANG L, et al. Catalytic degradation of tetracycline hydrochloride by persulfate activated with nano Fe0 immobilized mesoporous carbon [J]. Chemical Engineering Journal, 2018, 341: 392-401. doi: 10.1016/j.cej.2018.02.034
|
[74] |
WANG S, XU L, WANG J. Nitrogen-doped graphene as peroxymonosulfate activator and electron transfer mediator for the enhanced degradation of sulfamethoxazole [J]. Chemical Engineering Journal, 2019, 375: 122041. doi: 10.1016/j.cej.2019.122041
|
[75] |
CHEN H, CARROLL K C. Metal-free catalysis of persulfate activation and organic-pollutant degradation by nitrogen-doped graphene and aminated graphene [J]. Environmental Pollution, 2016, 215: 96-102. doi: 10.1016/j.envpol.2016.04.088
|
[76] |
XU H, ZHANG Y, LI J, et al. Heterogeneous activation of peroxymonosulfate by a biochar-supported Co3O4 composite for efficient degradation of chloramphenicols [J]. Environmental Pollution, 2020, 257: 113610. doi: 10.1016/j.envpol.2019.113610
|
[77] |
CHEN L, DING D, LIU C, et al. Degradation of norfloxacin by CoFe2O4-GO composite coupled with peroxymonosulfate: A comparative study and mechanistic consideration [J]. Chemical Engineering Journal, 2017, 334: 273-284.
|
[78] |
NOROOZI R, GHOLAMI M, FARZADKIA M, et al. Degradation of ciprofloxacin by CuFe2O4/GO activated PMS process in aqueous solution: performance, mechanism and degradation pathway [J]. International Journal of Environmental Analytical Chemistry, 2020: 1-22.
|
[79] |
TRUC N, HUNG C M, NGUYEN B, et al. Efficient heterogeneous activation of persulfate by iron-modified biochar for removal of antibiotic from aqueous solution: a case study of tetracycline removal [J]. Catalysts, 2019, 49: 9-23.
|
[80] |
WANG Z, ZHANG X, ZHANG H, et al. Synthesis of magnetic nickel ferrite/carbon sphere composite for levofloxacin elimination by activation of persulfate [J]. Separation and Purification Technology, 2019, 215: 528-539. doi: 10.1016/j.seppur.2019.01.063
|
[81] |
KONG J, LI R, WANG F, et al. Sulfate radical-induced transformation of trimethoprim with CuFe2O4/MWCNTs as a heterogeneous catalyst of peroxymonosulfate: mechanisms and reaction pathways [J]. RSC Advances, 2018, 8: 24787-24795. doi: 10.1039/C8RA04103B
|
[82] |
AHMAD M, TEEL A L, WATTS R J. Persulfate activation by subsurface minerals [J]. Journal of Contaminant Hydrology, 2010, 115: 34-45. doi: 10.1016/j.jconhyd.2010.04.002
|
[83] |
CAI T, LIU Y, WANG L, et al. Activation of persulfate by photoexcited dye for antibiotic degradation: Radical and nonradical reactions [J]. Chemical Engineering Journal, 2019, 375: 122070. doi: 10.1016/j.cej.2019.122070
|
[84] |
OCAMPO A M. Persulfate activation by organic compounds[D]. Pullman: Washington State University, 2009.
|
[85] |
AHMAD M, TEEL A, WATTS, R J. Mechanism of Persulfate Activation by Phenols[J]. Environmental Science & Technology 2013, 47: 5864-5871.
|
[86] |
FANG G, GAO J, DIONYSIOU D D, et al. Activation of Persulfate by Quinones: Free Radical Reactions and Implication for the Degradation of PCBs [J]. Environmental Science & Technology, 2013, 47: 4605-4611.
|
[87] |
NIE M, YAN C, XIONG X, et al. Degradation of chloramphenicol using a combination system of simulated solar light, Fe2+ and persulfate [J]. Chemical Engineering Journal, 2018, 348: 455-463. doi: 10.1016/j.cej.2018.04.124
|
[88] |
PAN Y, ZHANG Y, ZHOU M, et al. Synergistic degradation of antibiotic sulfamethazine by novel pre-magnetized Fe0/PS process enhanced by ultrasound [J]. Chemical Engineering Journal, 2018, 354: 777-789. doi: 10.1016/j.cej.2018.08.084
|
[89] |
HOU L, ZHANG H, XUE X. Ultrasound enhanced heterogeneous activation of peroxydisulfate by magnetite catalyst for the degradation of tetracycline in water [J]. Separation and Purification Technology, 2012, 84: 147-152. doi: 10.1016/j.seppur.2011.06.023
|
[90] |
KAUR B, KUNTUS L, TIKKER P, et al. Photo-induced oxidation of ceftriaxone by persulfate in the presence of iron oxides [J]. Science of The Total Environment, 2019, 676: 165-175. doi: 10.1016/j.scitotenv.2019.04.277
|
[91] |
TANG S, ZHAO M, YUAN D, et al. MnFe2O4 nanoparticles promoted electrochemical oxidation coupling with persulfate activation for tetracycline degradation [J]. Separation and Purification Technology, 2021, 255: 117690. doi: 10.1016/j.seppur.2020.117690
|
[92] |
WANG S, WANG J. Trimethoprim degradation by Fenton and Fe(II)-activated persulfate processes [J]. Chemosphere, 2018, 191: 97-105. doi: 10.1016/j.chemosphere.2017.10.040
|
[93] |
WU J, WANG B, CAGNETTA G, et al. Nanoscale zero valent iron-activated persulfate coupled with Fenton oxidation process for typical pharmaceuticals and personal care products degradation [J]. Separation and Purification Technology, 2020, 239: 116534. doi: 10.1016/j.seppur.2020.116534
|
[94] |
MALAKOOTIAN M, AHMADIAN M. Removal of ciprofloxacin from aqueous solution by electro-activated persulfate oxidation using aluminum electrodes [J]. Water Science and Technology, 2019, 80(3): 587-596. doi: 10.2166/wst.2019.306
|
[95] |
LIU J, ZHONG S, SONG Y, et al. Degradation of tetracycline hydrochloride by electro-activated persulfate oxidation [J]. Journal of Electroanalytical Chemistry, 2018, 809: 74-79. doi: 10.1016/j.jelechem.2017.12.033
|
[96] |
TANG S, YUAN D, RAO Y, et al. Persulfate activation in gas phase surface discharge plasma for synergetic removal of antibiotic in water [J]. Chemical Engineering Journal, 2018, 337: 446-454. doi: 10.1016/j.cej.2017.12.117
|
[97] |
QI C, LIU X, LIN C, et al. Degradation of sulfamethoxazole by microwave-activated persulfate: Kinetics, mechanism and acute toxicity [J]. Chemical Engineering Journal, 2014, 249: 6-14. doi: 10.1016/j.cej.2014.03.086
|
[98] |
NASSERI S, MAHVI A H, SEYEDSALEHI M, et al. Degradation kinetics of tetracycline in aqueous solutions using peroxydisulfate activated by ultrasound irradiation: Effect of radical scavenger and water matrix [J]. Journal of Molecular Liquids, 2017, 241: 704-714. doi: 10.1016/j.molliq.2017.05.137
|
[99] |
YIN R, GUO W, WANG H, et al. Enhanced peroxymonosulfate activation for sulfamethazine degradation by ultrasound irradiation: Performances and mechanisms [J]. Chemical Engineering Journal, 2018, 335: 145-153. doi: 10.1016/j.cej.2017.10.063
|
[100] |
WANG J, ZHUAN R. Degradation of antibiotics by advanced oxidation processes: An overview [J]. Science of The Total Environment, 2020, 701: 135023. doi: 10.1016/j.scitotenv.2019.135023
|
[101] |
WANG L, LAN X, PENG W, et al. Uncertainty and misinterpretation over identification, quantification and transformation of reactive species generated in catalytic oxidation processes: A review [J]. Journal of Hazardous Materials, 2020: 124436.
|
[102] |
DUAN P, MA T, YUE Y, et al. Fe/Mn nanoparticles encapsulated in nitrogen-doped carbon nanotubes as a peroxymonosulfate activator for acetamiprid degradation [J]. Environmental Science:Nano, 2019, 6: 1799-1811. doi: 10.1039/C9EN00220K
|
[103] |
LEI Y, LEI X, WESTERHOFF P, et al. Reactivity of Chlorine Radicals (Cl• and Cl2•–) with Dissolved Organic Matter and the Formation of Chlorinated Byproducts [J]. Environmental Science & Technology, 2021, 55: 689-699.
|
[104] |
JI Y, WANG L, JIANG M, et al. The role of nitrite in sulfate radical-based degradation of phenolic compounds: An unexpected nitration process relevant to groundwater remediation by in-situ chemical oxidation [J]. Water Research, 2017, 123: 249-257. doi: 10.1016/j.watres.2017.06.081
|
[105] |
ZHU L, JI J, LIU J, et al. Designing 3D-MoS2 sponge as excellent cocatalysts in advanced oxidation processes for pollutant control [J]. Angewandte Chemie International Edition, 2020, 59: 13968-13976. doi: 10.1002/anie.202006059
|