[1] PENN C, BOWEN J M. Design and construction of phosphorus removal structures for improving water quality[M]. The United States: Springer International Publishing, 2017.
[2] 何思琪, 周亚义, 林建伟, 等. 氢氧化镧改良沉积物对水中磷的吸附特征 [J]. 环境化学, 2018, 37(11): 2565-2574. doi: 10.7524/j.issn.0254-6108.2018011104 HE S Q, ZHOU Y Y, LIN J W, et al. Adsorption characteristics of phosphate in water on lanthanum hydroxide-amended sediments [J]. Environmental Chemistry, 2018, 37(11): 2565-2574(in Chinese). doi: 10.7524/j.issn.0254-6108.2018011104
[3] ZAMPARAS M, GIANNI A, STATHI P, et al. Removal of phosphate from natural waters using innovative modified bentonites[J]. Applied Clay Science, 2012, 62–63: 101–106.
[4] SCHINDLER D W, CARPENTER S R, CHAPRA S C, et al. Reducing phosphorus to curb lake eutrophication is a success [J]. Environmental Science & Technology, 2016, 50(17): 8923-8929.
[5] 隋克俭, 李家驹, 李鹏峰, 等. 溶气气浮工艺用于城镇污水处理厂二级出水的深度除磷研究 [J]. 环境工程, 2020, 38(7): 66-70,65. SUI K J, LI J J, LI P F, et al. Study on deep dephosphorization of effluent from urban sewage treatment plant by dissolved air floatation process [J]. Environmental Engineering, 2020, 38(7): 66-70,65(in Chinese).
[6] PAHUNANG R R, BALLESTEROS F C, DE LUNA M D G, et al. Optimum recovery of phosphate from simulated wastewater by unseeded fluidized-bed crystallization process [J]. Separation and Purification Technology, 2019, 212: 783-790. doi: 10.1016/j.seppur.2018.11.087
[7] ZENG W, ZHANG L M, FAN P C, et al. Community structures and population dynamics of “Candidatus Accumulibacter” in activated sludges of wastewater treatment plants using ppk1 as phylogenetic marker [J]. Journal of Environmental Sciences (China), 2018, 67: 237-248. doi: 10.1016/j.jes.2017.09.001
[8] WAN J, WU B, LO I M C. Development of Fe0/Fe3O4 composites with tunable properties facilitated by Fe2+ for phosphate removal from river water [J]. Chemical Engineering Journal, 2020, 388(January): 124242.
[9] CHEN L, LI Y, SUN Y, et al. La(OH)3 loaded magnetic mesoporous nanospheres with highly efficient phosphate removal properties and superior pH stability [J]. Chemical Engineering Journal, 2019, 360: 342-348. doi: 10.1016/j.cej.2018.11.234
[10] ZHOU K, WU B, SU L, et al. Enhanced phosphate removal using nanostructured hydrated ferric-zirconium binary oxide confined in a polymeric anion exchanger[J]. Chemical Engineering Journal, 2018, 345(December 2017): 640–647.
[11] 李聪, 钟溢健, 解庆林, 等. 不同吸附材料处理水中砷的效应分析 [J]. 现代化工, 2018, 38(7): 21-25. LI C, ZHONG Y J, XIE Q L, et al. Effect analysis on arsenic removal from water by different adsorption materials [J]. Modern Chemical Industry, 2018, 38(7): 21-25(in Chinese).
[12] QIU H, NI W, ZHANG H, et al. Fabrication and evaluation of a regenerable HFO-doped agricultural waste for enhanced adsorption affinity towards phosphate [J]. Science of the Total Environment, 2020, 703(PTa2): 135493.1-135493.11.
[13] ZHANG Q R, BOLISETTY S, CAO Y P, et al. Selective and efficient removal of fluoride from water: In situ engineered amyloid fibril/ZrO2 hybrid membranes [J]. Angewandte Chemie (International Ed. in English), 2019, 58(18): 6012-6016. doi: 10.1002/anie.201901596
[14] 陈丹丹, 衣晓虹, 王崇臣. 机械化学法制备金属-有机骨架及其复合物研究进展 [J]. 无机化学学报, 2020, 36(10): 1805-1821. doi: 10.11862/CJIC.2020.212 CHEN D D, YI X H, WANG C C. Preparation of metal-organic frameworks and their composites using mechanochemical methods [J]. Chinese Journal of Inorganic Chemistry, 2020, 36(10): 1805-1821(in Chinese). doi: 10.11862/CJIC.2020.212
[15] CHENG K, SVEC F, LV Y, et al. Hierarchical micro- and mesoporous Zn-based metal–organic frameworks templated by hydrogels: Their use for enzyme immobilization and catalysis of knoevenagel reaction [J]. Small, 2019, 15(44): 1-10.
[16] XU H Q, WANG K C, DING M L, et al. Seed-mediated synthesis of metal-organic frameworks [J]. Journal of the American Chemical Society, 2016, 138(16): 5316-5320. doi: 10.1021/jacs.6b01414
[17] GHALEI B, WAKIMOTO K, WU C Y, et al. Rational tuning of zirconium metal–organic framework membranes for hydrogen purification [J]. Angewandte Chemie International Edition, 2019, 58(52): 19034-19040. doi: 10.1002/anie.201911359
[18] HUANG K, WANG B, GUO S, et al. Micropatterned ultrathin MOF membranes with enhanced molecular sieving property [J]. Angewandte Chemie International Edition, 2018, 57(42): 13892-13896. doi: 10.1002/anie.201809872
[19] BAI Y, DOU Y B, XIE L H, et al. Zr-based metal-organic frameworks: Design, synthesis, structure, and applications [J]. Chemical Society Reviews, 2016, 45(8): 2327-2367. doi: 10.1039/C5CS00837A
[20] 李昭, 顾博翰, 蒋自展, 等. UiO-66系列材料在CO2吸附存储与分离中的应用研究进展 [J]. 化工新型材料, 2018, 46(11): 216-221. LI Z, GU B H, JIANG Z Z, et al. Research progress of UiO-66 series materials in CO2 adsorption storage and separation [J]. New Chemical Materials, 2018, 46(11): 216-221(in Chinese).
[21] WANG C, LIU X, CHEN J P, et al. Superior removal of arsenic from water with zirconium metal-organic framework UiO-66 [J]. Scientific Reports, 2015, 5: 1-10. doi: 10.9734/JSRR/2015/14076
[22] 韩易潼, 刘民, 李克艳, 等. 高稳定性金属有机骨架UiO-66的合成与应用 [J]. 应用化学, 2016, 33(4): 367-378. doi: 10.11944/j.issn.1000-0518.2016.04.150439 HAN Y T, LIU M, LI K Y, et al. Preparation and application of high stability metal-organic framework UiO-66 [J]. Chinese Journal of Applied Chemistry, 2016, 33(4): 367-378(in Chinese). doi: 10.11944/j.issn.1000-0518.2016.04.150439
[23] FANG S Y, ZHANG P, GONG J L, et al. Construction of highly water-stable metal-organic framework UiO-66 thin-film composite membrane for dyes and antibiotics separation[J]. Chemical Engineering Journal, 2020, 385(August 2019): 123400.
[24] CAVKA J H, JAKOBSEN S, OLSBYE U, et al. A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability [J]. Journal of the American Chemical Society, 2008, 130(42): 13850-13851. doi: 10.1021/ja8057953
[25] CHAVAN S M, SHEARER G C, SVELLE S, et al. Synthesis and characterization of amine-functionalized mixed-ligand metal-organic frameworks of UiO-66 topology [J]. Inorganic Chemistry, 2014, 53(18): 9509-9515. doi: 10.1021/ic500607a
[26] SAFARI G H, ZARRABI M, HOSEINI M, et al. Trends of natural and acid-engineered pumice onto phosphorus ions in aquatic environment: Adsorbent preparation, characterization, and kinetic and equilibrium modeling [J]. Desalination and Water Treatment, 2015, 54(11): 3031-3043. doi: 10.1080/19443994.2014.915385
[27] CHUBAR N I, KANIBOLOTSKYY V A, STRELKO V V, et al. Adsorption of phosphate ions on novel inorganic ion exchangers [J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2005, 255(1/2/3): 55-63.
[28] CHITRAKAR R, TEZUKA S, SONODA A, et al. Selective adsorption of phosphate from seawater and wastewater by amorphous zirconium hydroxide [J]. Journal of Colloid and Interface Science, 2006, 297(2): 426-433. doi: 10.1016/j.jcis.2005.11.011
[29] LONG F, GONG J L, ZENG G M, et al. Removal of phosphate from aqueous solution by magnetic Fe-Zr binary oxide [J]. Chemical Engineering Journal, 2011, 171(2): 448-455. doi: 10.1016/j.cej.2011.03.102
[30] LIU H L, SUN X F, YIN C Q, et al. Removal of phosphate by mesoporous ZrO2 [J]. Journal of Hazardous Materials, 2008, 151(2/3): 616-622.
[31] REN Z M, SHAO L N, ZHANG G S. Adsorption of phosphate from aqueous solution using an iron-zirconium binary oxide sorbent [J]. Water, Air, & Soil Pollution, 2012, 223(7): 4221-4231.
[32] TANG Y Q, ZONG E M, WAN H Q, et al. Zirconia functionalized SBA-15 as effective adsorbent for phosphate removal [J]. Microporous and Mesoporous Materials, 2012, 155: 192-200. doi: 10.1016/j.micromeso.2012.01.020
[33] HASHITANI H, OKUMURA M, FUJINAGA K. Preconcentration method for phosphate in water using activated carbon loaded with zirconium [J]. Fresenius' Zeitschrift Für Analytische Chemie, 1987, 326(6): 540-542.
[34] DELANEY P, MCMANAMON C, HANRAHAN J P, et al. Development of chemically engineered porous metal oxides for phosphate removal [J]. Journal of Hazardous Materials, 2011, 185(1): 382-391. doi: 10.1016/j.jhazmat.2010.08.128
[35] LI J, ZHANG S W, CHEN C L, et al. Removal of Cu(II) and fulvic acid by graphene oxide nanosheets decorated with Fe3O4 nanoparticles [J]. ACS Applied Materials & Interfaces, 2012, 4(9): 4991-5000.
[36] 王凯, 邱广明, 魏利强, 等. 氨基功能化P(St-HEMA)磁性微球的制备及对Pb(Ⅱ)的吸附性能 [J]. 功能材料, 2020, 51(3): 3176-3181,3188. WANG K, QIU G M, WEI L Q, et al. Amino functional P (St-HEMA) the preparation of magnetic microspheres and adsorption properties of Pb(Ⅱ) [J]. Functional Materials, 2020, 51(3): 3176-3181,3188(in Chinese).
[37] MA Y, ZHENG Y M, CHEN J P. A zirconium based nanoparticle for significantly enhanced adsorption of arsenate: Synthesis, characterization and performance [J]. Journal of Colloid and Interface Science, 2011, 354(2): 785-792. doi: 10.1016/j.jcis.2010.10.041
[38] ZHU X Y, LI B, YANG J, et al. Effective adsorption and enhanced removal of organophosphorus pesticides from aqueous solution by Zr-based MOFs of UiO-67 [J]. ACS Applied Materials & Interfaces, 2015, 7(1): 223-231.
[39] ZHAO X, LIU D, HUANG H, et al. The stability and defluoridation performance of MOFs in fluoride solutions [J]. Microporous and Mesoporous Materials, 2014, 185: 72-78. doi: 10.1016/j.micromeso.2013.11.002