[1] HUA Q F, ZHOU X, ZHANG B S, et al. Band modulation and interfacial engineering to generate efficient visible-light-induced bifunctional photocatalysts [J]. ACS Sustainable Chemistry & Engineering, 2020, 8(7): 2919-2930.
[2] CHEN L, REN J T, YUAN Z Y. Atomic heterojunction-induced electron interaction in P-doped g-C3N4 nanosheets supported V-based nanocomposites for enhanced oxidative desulfurization [J]. Chemical Engineering Journal, 2020, 387: 124164. doi: 10.1016/j.cej.2020.124164
[3] R L P, ZHOU W, SUN B J, et al. Defects-engineering of magnetic γ-Fe2O3 ultrathin nanosheets/mesoporous black TiO2 hollow sphere heterojunctions for efficient charge separation and the solar-driven photocatalytic mechanism of tetracycline degradation [J]. Applied Catalysis B:Environmental, 2019, 240: 319-328. doi: 10.1016/j.apcatb.2018.08.033
[4] ZHAO W P, WAN G, PENG C L, et al. Key single-atom electrocatalysis in metal-organic framework (MOF)-derived bifunctional catalysts [J]. ChemSusChem, 2018, 11(19): 3473-3479. doi: 10.1002/cssc.201801473
[5] HE T, ZHANG Y Q, CHEN Y, et al. Single iron atoms stabilized by microporous defects of biomass-derived carbon aerogels as high-performance cathode electrocatalysts for aluminum–air batteries [J]. Journal of Materials Chemistry A, 2019, 7(36): 20840-20846. doi: 10.1039/C9TA05981D
[6] MACLAUGHLIN C. Role for standardization in electrocatalytic ammonia synthesis: a conversation with leo liu, lauren greenlee, and douglas macfarlane [J]. ACS Energy Letters, 2019, 4(6): 1432-1436. doi: 10.1021/acsenergylett.9b01123
[7] MPOURMPAKIS G, TAN K Y, DIXIT M. et al. Predicting metal−support interactions in oxide-supported single atom catalysts [J]. Industrial & Engineering Chemistry Research, 2019, 58: 20236-20246.
[8] AHMAD M, CHEN S, YE F, et al. Efficient photo-Fenton activity in mesoporous MIL-100(Fe) decorated with ZnO nanosphere for pollutants degradation [J]. Applied Catalysis B:Environmental, 2019, 245: 428-438. doi: 10.1016/j.apcatb.2018.12.057
[9] ZHANG M, XIAO C M, YAN X, et al. Efficient removal of organic pollutants by metal-organic framework derived Co/C yolk-shell nanoreactors: size-exclusion and confinement effect [J]. Environmental Science & Technology, 2020, 54(16): 10289-10300.
[10] JIAO L, JIANG H L. Metal-organic-framework-based single-atom catalysts for energy applications [J]. Chem, 2019, 5(4): 786-804. doi: 10.1016/j.chempr.2018.12.011
[11] ZHAO C X, LI B Q, LIU J N, et al. Intrinsic electrocatalytic activity regulation of M-N-C single-atom catalysts for oxygen reduction reaction [J]. Angewandte Chemie International Edition, 2020, 60(9): 4448-4463.
[12] LIU L C, CORMA A. Metal catalysts for heterogeneous catalysis: from single atoms to nanoclusters and nanoparticles [J]. Chemical Reviews, 2018, 118(10): 4981-5079. doi: 10.1021/acs.chemrev.7b00776
[13] QIAO B T, WANG A Q, YANG X F, et al. Single-atom catalysis of CO oxidation using Pt1/FeOx [J]. Nature Chemistry, 2011, 3(8): 634-641. doi: 10.1038/nchem.1095
[14] GUO Z, XIE Y B, XIAO J D, et al. Single-atom Mn–N4site-catalyzed peroxone reaction for the efficient production of hydroxyl radicals in an acidic solution [J]. Journal of the American Chemical Society, 2019, 141(30): 12005-12010. doi: 10.1021/jacs.9b04569
[15] HE T W, PUENTE SAR, DU A J. Atomically embedded asymmetrical dual-metal dimers on N-doped graphene for ultra-efficient nitrogen reduction reaction [J]. Journal of Catalysis, 2020, 388: 77-83. doi: 10.1016/j.jcat.2020.05.009
[16] CHEN Y, LIN J, LI L, et al. Identifying size effects of Pt as single atoms and nanoparticles supported on FeOx for the water-gas shift reaction [J]. ACS Catalysis, 2018, 8(2): 859-868. doi: 10.1021/acscatal.7b02751
[17] CHEN W L, MA Y L, LI F, et al. Strong electronic interaction of amorphous Fe2O3 nanosheets with single-atom Pt toward enhanced carbon monoxide oxidation [J]. Advanced Functional Materials, 2019, 29(42): 1904278. doi: 10.1002/adfm.201904278
[18] SHI X X, LIN Y, HUANG L, et al. Copper catalysts in semihydrogenation of acetylene: From single atoms to nanoparticles [J]. ACS Catalysis, 2020, 10(5): 3495-3504. doi: 10.1021/acscatal.9b05321
[19] WANG J, LI Z, WU Y, et al. Fabrication of single-atom catalysts with precise structure and high metal loading [J]. Advanced Materials, 2018, 30(48): 1801649. doi: 10.1002/adma.201801649
[20] SUN T T, XU L B, WANG D S, et al. Metal organic frameworks derived single atom catalysts for electrocatalytic energy conversion [J]. Nano Research, 2019, 12(9): 2067-2080. doi: 10.1007/s12274-019-2345-4
[21] XIANG H J, FENG W, CHEN Y. Single-atom catalysts in catalytic biomedicine [J]. Advanced Materials, 2020, 32(8): 1905994. doi: 10.1002/adma.201905994
[22] LU Y B, KUO C T, KOVARIK L, et al. A versatile approach for quantification of surface site fractions using reaction kinetics: the case of CO oxidation on supported Ir single atoms and nanoparticles [J]. Journal of Catalysis, 2019, 378: 121-130. doi: 10.1016/j.jcat.2019.08.023
[23] CHEN F, JIANG X Z, ZHANG L L, et al. Single-atom catalysis: bridging the homo- and heterogeneous catalysis [J]. Chinese Journal of Catalysis, 2018, 39(5): 893-898. doi: 10.1016/S1872-2067(18)63047-5
[24] CHEN F, WU X L, YANG L, et al. Efficient degradation and mineralization of antibiotics via heterogeneous activation of peroxymonosulfate by using graphene supported single-atom cu catalyst [J]. Chemical Engineering Journal, 2020, 394: 124904. doi: 10.1016/j.cej.2020.124904
[25] LI X N, YANG X F, HUANG Y Q, et al. Supported noble-metal single atoms for heterogeneous catalysis [J]. Advanced Materials, 2019, 31(50): e1902031. doi: 10.1002/adma.201902031
[26] WANG J, HEIL T, ZHU B C, et al. A single Cu-center containing enzyme-mimic enabling full photosynthesis under CO2reduction [J]. ACS Nano, 2020, 14(7): 8584-8593. doi: 10.1021/acsnano.0c02940
[27] LI X, SURKUS A E, RABEAH J, et al. Cobaltsingle atom site catalysts with high stability for selective dehydrogenation of Formic Acid [J]. Angewandte Chemie International Edition, 2020, 59(37): 15849-15854. doi: 10.1002/anie.202004125
[28] LI J, HUANG H L, LIU P, et al. Metal-organic framework encapsulated single-atom Pt catalysts for efficient photocatalytic hydrogen evolution [J]. Journal of Catalysis, 2019, 375: 351-360. doi: 10.1016/j.jcat.2019.06.024
[29] HUANG L Z, WEI X L, GAO E L, et al. Single Fe atoms confined in two-dimensional MoS2 for sulfite activation: a biomimetic approach towards efficient radical generation [J]. Applied Catalysis B:Environmental, 2020, 268: 118459. doi: 10.1016/j.apcatb.2019.118459
[30] TIAN C C, ZHANG H Y, ZHU X, et al. A new trick for an old support: stabilizing gold single atoms on LaFeO3 perovskite [J]. Applied Catalysis B:Environmental, 2020, 261: 118178. doi: 10.1016/j.apcatb.2019.118178
[31] LAI W H, MIAO Z, WANG Y X, et al. Atomic-local environments of single-atom catalysts: synthesis, electronic structure, and activity [J]. Advanced Energy Materials, 2019, 9(43): 1900722. doi: 10.1002/aenm.201900722
[32] LIU J C, WANG Y G, LI J. Toward rational design of oxide-supported single-atom catalysts: atomic dispersion of gold on ceria [J]. Journal Of The American Chemical Society, 2017, 139(17): 6190-6199. doi: 10.1021/jacs.7b01602
[33] LIU C J, ZHANG T, LI J, et al. Theoretical understanding of the stability of single-atom catalysts [J]. National Science Review, 2018, 5(5): 638-641. doi: 10.1093/nsr/nwy094
[34] YANG J, LI W, WANG D, et al. Electronic metal-support interaction of single-atom catalysts and applications in electrocatalysis [J]. Advanced Material, 2020, 32(49): e2003300. doi: 10.1002/adma.202003300
[35] YAN Q Q, WU D X, CHU S Q, et al. Reversing the charge transfer between platinum and sulfur-doped carbon support for electrocatalytic hydrogen evolution [J]. Nature Communications, 2019, 10(1): 4977. doi: 10.1038/s41467-019-12851-w
[36] WANG K, WANG X, LIANG X. Synthesis of high metal loading single atom catalysts and exploration of the active center structure [J]. Chem Cat Chem, 2020, 13(1): 28-58.
[37] PENG Y, LU B Z, CHEN S W. Carbon-supported single atom catalysts for electrochemical energy conversion and storage [J]. Advanced Materials, 2018, 30(48): 1801995. doi: 10.1002/adma.201801995
[38] LIU K P, ZHAO X T, REN G Q, et al. Strong metal-support interaction promoted scalable production of thermally stable single-atom catalysts [J]. Nature Communications, 2020, 11(1): 1263. doi: 10.1038/s41467-020-14984-9
[39] MIERCZYNSKI P, MANIUKIEWICZ W, MANIECKI T. Comparative studies of Pd, Ru, Ni, Cu/ZnAl2O4 catalysts for the water gas shift reaction [J]. Open Chemistry, 2013, 11(6): 912-919. doi: 10.2478/s11532-013-0223-6
[40] ZHANG Q, QIN X X, DUAN MU F P, et al. Isolated platinum atoms stabilized by amorphous tungstenic acid: metal-support interaction for synergistic oxygen activation [J]. Angewandte Chemie International Edition, 2018, 57(30): 9351-9356. doi: 10.1002/anie.201804319
[41] TAN K, DIXIT M, DEAN J, et al. Predicting metal–support interactions in oxide-supported single-atom catalysts [J]. Industrial & Engineering Chemistry Research, 2019, 58(44): 20236-20246.
[42] SU J W, GE R X, DONG Y, et al. Recent progress in single-atom electrocatalysts: concept, synthesis, and applications in clean energy conversion [J]. Journal of Materials Chemistry A, 2018, 6(29): 14025-14042. doi: 10.1039/C8TA04064H
[43] AN S F, ZHANG G H, WANG T W, et al. High-density ultra-small clusters and single-atom Fe sites embedded in graphitic carbon nitride (g-C3N4) for highly efficient catalytic advanced oxidation processes [J]. ACS Nano, 2018, 12(9): 9441-9450. doi: 10.1021/acsnano.8b04693
[44] WANG Q, LI J, TU X J, et al. Single atomically anchored cobalt on carbon quantum dots as efficient photocatalysts for visible light-promoted oxidation reactions [J]. Chemistry of Materials, 2019, 32(2): 734-743.
[45] ZHANG Z P, GAO X J, DOU M L, et al. Biomass derived N-doped porous carbon supported single fe atoms as superior electrocatalysts for oxygen reduction [J]. Small, 2017, 13(22): 1604290. doi: 10.1002/smll.201604290
[46] YANG J, ZENG D, ZHANG Q, et al. Single Mn atom anchored on N-doped porous carbon as highly efficient Fenton-like catalyst for the degradation of organic contaminants [J]. Applied Catalysis B:Environmental, 2020, 279: 119363. doi: 10.1016/j.apcatb.2020.119363
[47] LI X, HUANG X, XI S, et al. Single cobalt atoms anchored on porous N-Doped graphene with dual reaction sites for efficient Fenton-like catalysis [J]. Journal of the American Chemical Society, 2018, 140(39): 12469-12475. doi: 10.1021/jacs.8b05992
[48] DU W, ZHANG Q, SHANG Y, et al. Sulfate saturated biosorbent-derived Co-S@NC nanoarchitecture as an efficient catalyst for peroxymonosulfate activation [J]. Applied Catalysis B:Environmental, 2020, 262: 118302. doi: 10.1016/j.apcatb.2019.118302
[49] WANG G L, NIE X W, JI X J, et al. Enhanced heterogeneous activation of peroxymonosulfate by Co and N codoped porous carbon for degradation of organic pollutants: the synergism between Co and N [J]. Environmental Science:Nano, 2019, 6(2): 399-410. doi: 10.1039/C8EN01231H
[50] MIAO J, GENG W, ALVAREZ P J J, et al. 2D N-doped porous carbon derived from polydopamine-coated graphitic carbon nitride for efficient nonradical activation of peroxymonosulfate [J]. Environmental Science & Technology, 2020, 54(13): 8473-8481.
[51] SUN J F, XU Q Q,QI J L, et al. Isolated single atoms anchored on N-doped carbon materials as a highly efficient catalyst for electrochemical and organic reactions [J]. ACS Sustainable Chemistry & Engineering, 2020, 8(39): 14630-14656.
[52] AITBEKOVA A, WRASMAN C J, RISCOE A R, et al. Determining number of sites on ceria stabilizing single atoms via metal nanoparticle redispersion [J]. Chinese Journal of Catalysis, 2020, 41(6): 998-1005. doi: 10.1016/S1872-2067(19)63504-7
[53] ZHANG L, ZHAO X, YUAN Z, et al. Oxygen defect-stabilized heterogeneous single atom catalysts: preparation, properties and catalytic application [J]. Journal of Materials Chemistry A, 2021, 9(7): 3855-3879. doi: 10.1039/D0TA10541D
[54] WAN J, CHEN W, JIA C, et al. Defect effects on TiO2nanosheets: stabilizing single atomic site Au and promoting catalytic properties [J]. Advanced Materials, 2018, 30(11): 1705369. doi: 10.1002/adma.201705369
[55] XIONG X, MAO C, YANG Z, et al. Photocatalytic CO2 reduction to CO over Ni single atoms supported on defect-rich zirconia [J]. Advanced Energy Materials, 2020, 10(46): 2002928. doi: 10.1002/aenm.202002928
[56] 殷立峰, 李惠惠, 张圆正, 等. 单原子光催化剂的合成、表征及在环境与能源领域的应用 [J]. 材料导报, 2020, 34(2): 3056-3068. YIN L F, LI H H, ZHANG Y Z, et al. Single atom photocatalysts: synthesis, characterization and applications in the fields of environment and energy [J]. Materials Reports, 2020, 34(2): 3056-3068(in Chinese).
[57] LEE B H, PARK S, KIM M, et al. Reversible and cooperative photoactivation of single-atom Cu/TiO2 photocatalysts [J]. Nature Materials, 2019, 18(6): 620-626. doi: 10.1038/s41563-019-0344-1
[58] LIU W, ZHANG L, LIU X, et al. Discriminating catalytically active FeNx species of atomically dispersed Fe-N-C catalyst for selective oxidation of the C-H bond [J]. Journal Of The American Chemical Society, 2017, 139(31): 10790-10798. doi: 10.1021/jacs.7b05130
[59] LANG R, XI W, LIU J C, et al. Non defect-stabilized thermally stable single-atom catalyst, Nature Communications, 2019, 10 (1): 234.
[60] ZHANG L L, WANG A Q, MILLER J T, et al. Efficient and durable Au alloyed Pd single-atom catalyst for the ullmann reaction of Aryl chlorides in water [J]. ACS Catalysis, 2014, 4(5): 1546-1553. doi: 10.1021/cs500071c
[61] 栾金义, 王成鸿, 孟凡宁, 等. 金属-有机框架材料在石化环保领域的应用 [J]. 化工进展, 2020, 39(2): 429-438. LUAN J Y, WANG C H, MENG F N, et al. Environmental applications of metal-organic frameworks in petrochemical industries [J]. Chemical Industry and Engineering Progress, 2020, 39(2): 429-438(in Chinese).
[62] ZHANG H B, WEI J, DONG J C, et al. Efficient visible-light-driven carbon dioxide reduction by a single-atom implanted metal-organic framework [J]. Angewandte Chemie International Edition, 2016, 55(46): 14310-14314. doi: 10.1002/anie.201608597
[63] ZUO Q, LIU T T, CHEN C S, et al. Ultrathin metal-organic framework nanosheets with ultrahigh loading of single Pt atoms for efficient visible-light-driven photocatalytic H2 evolution [J]. Angewandte Chemie International Edition, 2019, 58(30): 10198-10203. doi: 10.1002/anie.201904058
[64] CHEN X, MA DD, CHEN B, et al. Metal–organic framework-derived mesoporous carbon nanoframes embedded with atomically dispersed Fe–N active sites for efficient bifunctional oxygen and carbon dioxide electroreduction [J]. Applied Catalysis B:Environmental, 2020, 267: 118720. doi: 10.1016/j.apcatb.2020.118720
[65] LI Z H, HE H Y, CAO H B, et al. Atomic Co/Ni dual sites and Co/Ni alloy nanoparticles in N-doped porous Janus-like carbon frameworks for bifunctional oxygen electrocatalysis [J]. Applied Catalysis B:Environmental, 2019, 240: 112-121. doi: 10.1016/j.apcatb.2018.08.074
[66] WANG J P, HAN G K, WANG L G, et al. ZIF-8 with ferrocene encapsulated: apromising precursor to single-atom Fe embedded nitrogen-doped carbon as highly efficient catalyst for oxygen electroreduction [J]. Small, 2018, 14(15): 1704282. doi: 10.1002/smll.201704282
[67] XIAO F, XU G L, SUN C J, et al. Nitrogen-coordinated single iron atom catalysts derived from metal organic frameworks for oxygen reduction reaction [J]. Nano Energy, 2019, 61: 60-68. doi: 10.1016/j.nanoen.2019.04.033
[68] YE X X, WANG H W, LIN Y, et al. Insight of the stability and activity of platinum single atoms on ceria [J]. Nano Research, 2019, 12(6): 1401-1409. doi: 10.1007/s12274-019-2351-6
[69] LIANG S, HAO C, SHI Y. The power of single-atom catalysis [J]. ChemCatChem, 2015, 7(17): 2559-2567. doi: 10.1002/cctc.201500363
[70] ZUO S, JIN X, WANG X, et al. Sandwich structure stabilized atomic Fe catalyst for highly efficient Fenton-like reaction at all pH values [J]. Applied Catalysis B:Environmental, 2021, 282: 119551. doi: 10.1016/j.apcatb.2020.119551
[71] LI Z, LI K, MA S, et al. Activation of peroxymonosulfate by iron-biochar composites: comparison of nanoscale Fe with single-atom Fe [J]. Journal of Colloid and Interface Science, 2021, 582: 598-609. doi: 10.1016/j.jcis.2020.08.049
[72] LI Y, YANG T, QIU S, et al. Uniform N-coordinated single-atomic iron sites dispersed in porous carbon framework to activate PMS for efficient BPA degradation via high-valent iron-oxo species [J]. Chemical Engineering Journal, 2020, 389: 124382. doi: 10.1016/j.cej.2020.124382
[73] JIANG N, XU H, WANG L, et al. Nonradical oxidation of pollutants with single-atom-Fe(III)-activated persulfate: Fe(V) being the possible intermediate oxidant [J]. Environmental Science & Technology, 2020, 54(21): 14057-14065.
[74] CHEN M, WANG N, ZHU L. Single-atom dispersed Co-N-C: A novel adsorption-catalysis bifunctional material for rapid removing bisphenol A [J]. Catalysis Today, 2020, 348(15): 187-193.
[75] YIN Y, LIW L, XU CL, et al. Ultrafine copper nanoclusters and single sites for Fenton-like reactions with high atom utilities [J]. Environmental Science:Nano, 2020, 7: 2595-2606. doi: 10.1039/D0EN00505C
[76] CUI Y, XU J W, ZHENG X L, et al. Organic wastewater treatment by a single-atom catalyst and electrolytically produced H2O2 [J]. Nature Sustainability, 2021, 4: 233-241. doi: 10.1038/s41893-020-00635-w
[77] LUO T, HU X, SHE Z, et al. Synergistic effects of Ag-doped and morphology regulation of graphitic carbon nitride nanosheets for enhanced photocatalytic performance [J]. Journal of Molecular Liquids, 2021, 324: 114772. doi: 10.1016/j.molliq.2020.114772
[78] XU T, ZHENG H, ZHANG P. Isolated Pt single atomic sites anchored on nanoporous TiO2 film for highly efficient photocatalytic degradation of low concentration toluene [J]. Journal of Hazardous Materials, 2020, 388: 121746. doi: 10.1016/j.jhazmat.2019.121746
[79] XU T, ZHAO H, ZHENG H, et al. Atomically Pt implanted nanoporous TiO2 film for photocatalytic degradation of trace organic pollutants in water [J]. Chemical Engineering Journal, 2020, 385: 123832. doi: 10.1016/j.cej.2019.123832
[80] YANG Y, ZENG G, HUANG D, et al. In situ grown single-atom cobalt on polymeric carbon nitride with bidentate ligand for efficient photocatalytic degradation of refractory antibiotics [J]. Small, 2020, 16(29): e2001634. doi: 10.1002/smll.202001634
[81] XU HD, JIANG N, WANG D, et al. Improving pms oxidation of organic pollutants by single cobalt atom catalyst through hybrid radical and non-radical pathways [J]. Applied Catalysis B:Environmental, 2020, 263: 118350. doi: 10.1016/j.apcatb.2019.118350
[82] XIA D H, LIU H D, XU BH, et al. Single Ag atom engineered 3D-MnO2 porous hollow microspheres for rapid photothermocatalytic inactivation of E. coli under solar light [J]. Applied Catalysis B:Environmental, 2019, 245: 177-189. doi: 10.1016/j.apcatb.2018.12.056
[83] CAI J, JAVED R, YE D, et al. Recent progress in noble metal nanocluster and single atom electrocatalysts for the hydrogen evolution reaction [J]. Journal of Materials Chemistry A, 2020, 8(43): 22467-22487. doi: 10.1039/D0TA06942F
[84] LIU H, PENG X, LIU X. Single-atom catalysts for the hydrogen evolution reaction [J]. ChemElectroChem, 2018, 5(20): 2963-2974. doi: 10.1002/celc.201800507
[85] JIN H, SULTAN S, HA M, et al. Simple and scalable mechanochemical synthesis of noble metal catalysts with single atoms toward highly efficient hydrogen evolution [J]. Advanced Functional Materials, 2020, 30(25): 2000531. doi: 10.1002/adfm.202000531
[86] LI J, BANIS M N, REN Z, et al. Unveiling the nature of Pt single-atom catalyst during electrocatalytic hydrogen evolution and oxygen reduction reactions [J]. Small, 2021: e2007245.
[87] LV X, WEI W, ZHAO P, et al. Oxygen-terminated BiXenes and derived single atom catalysts for the hydrogen evolution reaction [J]. Journal of Catalysis, 2019, 378: 97-103. doi: 10.1016/j.jcat.2019.08.019
[88] ZHANG H B, YU L, CHEN T, et al. Urface modulation of hierarchical MoS2 nanosheets by Ni single atoms for enhanced electrocatalytic hydrogen evolution [J]. Advanced Functional Materials, 2018, 28(51): 1807086. doi: 10.1002/adfm.201807086
[89] CHEN C H, WU D Y, LI Z, et al. Ruthenium-based single-atom alloy with high electrocatalytic activity for hydrogen evolution [J]. Advanced Energy Materials, 2019, 9(20): 1803913. doi: 10.1002/aenm.201803913
[90] 陈卫, 张友林, 李晓坤, 等. 金催化-还原策略制备单原子层铂的Au@Pt核壳结构及电催化应用[J], 中国科学: 化学, 2017, 47(5): 655-662. CHEN W, ZHANG Y L, LI X K, et al. Synthesis of Au@Pt core-shell nanoparticles with a monolayer Pt shell using the Au-catalytic-reduction strategy and theapplication in electrocatalysis[J]. Scientia Sinica Chimica, 2017, 47(5): 655-662(in Chinese).
[91] ZHU C Z, FU S F, SONG J H, et al. Self-assembled Fe-N-doped carbon nanotube aerogels with single-atom catalyst feature as high-efficiency oxygen reduction electrocatalysts [J]. Small, 2017, 13(15): 1603407. doi: 10.1002/smll.201603407
[92] DU Z Y, YU P, WANG L, et al. Cubic imidazolate frameworks-derived CoFe alloy nanoparticles-embedded N-doped graphitic carbon for discharging reaction of Zn-air battery [J]. Science China Materials, 2019, 63(3): 327-338.
[93] SUN W, DU L, TAN Q, et al. Engineering of nitrogen coordinated single cobalt atom moieties for oxygen electroreduction [J]. ACS Appl Mater Interfaces, 2019, 11(44): 41258-41266. doi: 10.1021/acsami.9b11830
[94] CHEN Z W, SU D, XIAO M L, et al. A single-atom iridium heterogeneous catalyst in oxygen reduction reaction [J]. Angewandte Chemie International Edition, 2019, 58(28): 9648-9648. doi: 10.1002/anie.201907250
[95] ZENG H, LIU X, CHEN F, et al. Single atoms on a nitrogen-doped boron phosphide monolayer: anew promising bifunctional electrocatalyst for ORR and OER [J]. ACS Appl Mater Interfaces, 2020, 12(47): 52549-52559. doi: 10.1021/acsami.0c13597
[96] ZHU C, SHI Q, XU B Z, et al. Hierarchically porous M-N-C (M = Co and Fe) single-atom electrocatalysts with robust M-Nx active moieties enable enhanced ORR performance [J]. Advanced Energy Materials, 2018, 8(29): 1801956. doi: 10.1002/aenm.201801956
[97] LIU D, LI J C, DING S, et al. 2D single-atom catalyst with optimized iron sites produced by thermal melting of metal-organic frameworks for oxygen reduction reaction [J]. Small Methods, 2020, 4(6): 1900827. doi: 10.1002/smtd.201900827
[98] XU Y, ZHU L, CUI X, et al. Graphitizing N-doped mesoporous carbon nanospheres via facile single atom iron growth for highly efficient oxygen reduction reaction [J]. Nano Research, 2020, 13(3): 752-758. doi: 10.1007/s12274-020-2689-9
[99] 郑岳青, 朱红林, 李文英, 等. CO2电还原用氮掺杂碳基过渡金属单原子催化剂[J]. 化学进展, 2019, 31(7) : 939-953. ZHENG Y Q, ZHU H H, LI W Y, et al. N-doped porous carbon supported transition metal single atomic catalysts for CO2 electroreduction reaction[J], Progress in Chemistry, 2019, 31(7) : 939-953(in Chinese).
[100] ZHANG E H, WANG T, YU K, et al. Bismuth single atoms resulting from transformation of metal-organic frameworks and their use as electrocatalysts for CO2 reduction [J]. Journal of the American Chemical Society, 2019, 141(42): 16569-16573. doi: 10.1021/jacs.9b08259
[101] HOSSAIN MD, HUANG Y, YU T H, et al. Reaction mechanism and kinetics for CO2 reduction on nickel single atom catalysts from quantum mechanics [J]. Nature Communications, 2020, 11(1): 2256. doi: 10.1038/s41467-020-16119-6
[102] YANG F, SONG P, LIU X Z, et al. Highly efficient CO2 electroreduction on ZnN4-based single-atom catalyst [J]. Angewandte Chemie International Edition, 2018, 57(38): 12303-12307. doi: 10.1002/anie.201805871
[103] YANG HP, LIN Q, WU Y, et al. Highly efficient utilization of single atoms via constructing 3D and free-standing electrodes for CO2 reduction with ultrahigh current density [J]. Nano Energy, 2020, 70: 104454. doi: 10.1016/j.nanoen.2020.104454
[104] MA Z M, SONG T, YUAN Y Z, et al. Synergistic catalysis on Fe–Nx sites and Fe nanoparticles for efficient synthesis of quinolines and quinazolinones via oxidative coupling of amines and aldehydes [J]. Chemical Science, 2019, 10(44): 10283-10289. doi: 10.1039/C9SC04060A
[105] YUAN J Y, ZHANG W H, LI X X, et al. A high performance catalyst for methane conversion to methanol: graphene supported single atom Co [J]. Chemical Communications, 2018, 54(18): 2284-2287. doi: 10.1039/C7CC08713F
[106] LIU Y M, XU Q, FAN X F, et al. Electrochemical reduction of N2 to ammonia on Co single atom embedded N-doped porous carbon under ambient conditions [J]. Journal of Materials Chemistry A, 2019, 7(46): 26358-26363. doi: 10.1039/C9TA10382A
[107] ZOU X P, WANG L N, LI X N, et al. Noble-metal-free single-atom catalysts CuAl4O7-9(-) for CO oxidation by O2 [J]. Angewandte Chemie International Edition, 2018, 57(34): 10989-10993. doi: 10.1002/anie.201807056
[108] 高李杰, 孟凯, 姜伟丽, 等. 负载固相的铑基催化剂应用于烯烃氢甲酰化反应的研究进展 [J]. 化工进展, 2018, 37(4): 1433-1441. GAO L J, MENG K, JIANG W L, et al. Research progress of immobilized Rh-based catalysts on solid supports for olefin hydroformylation [J]. Chemical Industry and Engineering Progress, 2018, 37(4): 1433-1441(in Chinese).