[1] HAN R R, ZHOU B H, HUANG Y Y, et al. Bibliometric overview of research trends on heavy metal health risks and impacts in 1989-2018 [J]. Journal of Cleaner Production, 2020, 276: 123249. doi: 10.1016/j.jclepro.2020.123249
[2] DUAN W W, XU C, LIU Q, et al. Levels of a mixture of heavy metals in blood and urine and all-cause, cardiovascular disease and cancer mortality: A population-based cohort study [J]. Environmental Pollution, 2020, 263: 114630. doi: 10.1016/j.envpol.2020.114630
[3] JOSEPH L, JUN B M, FLORA J R V, et al. Removal of heavy metals from water sources in the developing world using low-cost materials: A review [J]. Chemosphere, 2019, 229: 142-159. doi: 10.1016/j.chemosphere.2019.04.198
[4] AHMED M J K, AHMARUZZAMAN M. A review on potential usage of industrial waste materials for binding heavy metal ions from aqueous solutions [J]. Journal of Water Process Engineering, 2016, 10: 39-47. doi: 10.1016/j.jwpe.2016.01.014
[5] GARBA Z N, RAHIM A A. Evaluation of optimal activated carbon from an agricultural waste for the removal of Para-chlorophenol and 2, 4-dichlorophenol [J]. Process Safety and Environmental Protection, 2016, 102: 54-63. doi: 10.1016/j.psep.2016.02.006
[6] LIU J, SU D H, YAO J R, et al. Soy protein-based polyethylenimine hydrogel and its high selectivity for copper ion removal in wastewater treatment [J]. Journal of Materials Chemistry A, 2017, 5(8): 4163-4171. doi: 10.1039/C6TA10814H
[7] QIN H Q, HU T J, ZHAI Y B, et al. The improved methods of heavy metals removal by biosorbents: A review [J]. Environmental Pollution, 2020, 258: 113777. doi: 10.1016/j.envpol.2019.113777
[8] MAHMOODI N M. Photocatalytic ozonation of dyes using multiwalled carbon nanotube [J]. Journal of Molecular Catalysis A:Chemical, 2013, 366: 254-260. doi: 10.1016/j.molcata.2012.10.002
[9] de FRANCE K J, HOARE T, CRANSTON E D. Review of hydrogels and aerogels containing nanocellulose [J]. Chemistry of Materials, 2017, 29(11): 4609-4631. doi: 10.1021/acs.chemmater.7b00531
[10] ZHOU Z H, YANG Y B, HAN Y Y, et al. In situ doping enables the multifunctionalization of templately synthesized polyaniline@cellulose nanocomposites [J]. Carbohydrate Polymers, 2017, 177: 241-248. doi: 10.1016/j.carbpol.2017.08.136
[11] ZHAO H, OUYANG X K, YANG L Y. Adsorption of lead ions from aqueous solutions by porous cellulose nanofiber-sodium alginate hydrogel beads [J]. Journal of Molecular Liquids, 2021, 324: 115122. doi: 10.1016/j.molliq.2020.115122
[12] TANG C X, BRODIE P, LI Y Z, et al. Shape recoverable and mechanically robust cellulose aerogel beads for efficient removal of copper ions [J]. Chemical Engineering Journal, 2020, 392: 124821. doi: 10.1016/j.cej.2020.124821
[13] MO L T, PANG H W, TAN Y, et al. 3D multi-wall perforated nanocellulose-based polyethylenimine aerogels for ultrahigh efficient and reversible removal of Cu(II) ions from water [J]. Chemical Engineering Journal, 2019, 378: 122157. doi: 10.1016/j.cej.2019.122157
[14] 李健, 张恩爽, 刘圆圆, 等. 超低密度气凝胶的制备及应用 [J]. 化学进展, 2020, 32(6): 713-726. LI J, ZHANG E S, LIU Y Y, et al. Preparation of the ultralow density aerogel and its application [J]. Progress in Chemistry, 2020, 32(6): 713-726(in Chinese).
[15] ZHANG N, ZANG G L, SHI C, et al. A novel adsorbent TEMPO-mediated oxidized cellulose nanofibrils modified with PEI: Preparation, characterization, and application for Cu(II) removal [J]. Journal of Hazardous Materials, 2016, 316: 11-18. doi: 10.1016/j.jhazmat.2016.05.018
[16] JRADI K, BIDEAU B, CHABOT B, et al. Characterization of conductive composite films based on TEMPO-oxidized cellulose nanofibers and polypyrrole [J]. Journal of Materials Science, 2012, 47(8): 3752-3762. doi: 10.1007/s10853-011-6226-9
[17] HO Y S, OFOMAJA A E. Pseudo-second-order model for lead ion sorption from aqueous solutions onto palm kernel fiber [J]. Journal of Hazardous Materials, 2006, 129(1/2/3): 137-142.
[18] MITTAL A, THAKUR V, GAJBE V. Evaluation of adsorption characteristics of an anionic azo dye Brilliant Yellow onto hen feathers in aqueous solutions [J]. Environmental Science and Pollution Research, 2012, 19(6): 2438-2447. doi: 10.1007/s11356-012-0756-9
[19] 杜明阳, 邹京, 豆俊峰, 等. 钾改性蒙脱石磁性微球对铯的吸附性能 [J]. 环境化学, 2021, 40(3): 779-789. doi: 10.7524/j.issn.0254-6108.2019110202 DU M Y, ZOU J, DOU J F, et al. Adsorption properties of potassium modified montmorillonite magnetic microspheres for cesium [J]. Environmental Chemistry, 2021, 40(3): 779-789(in Chinese). doi: 10.7524/j.issn.0254-6108.2019110202
[20] 侯璟玥, 马海红, 徐卫兵, 等. 改性羧甲基纤维素缓释肥包膜材料的制备与表征 [J]. 材料科学与工程学报, 2018, 36(1): 90-94. HOU J Y, MA H H, XU W B, et al. Preparation and characterization of modified carboxymethyl cellulose films coating materials of fertilizers [J]. Journal of Materials Science and Engineering, 2018, 36(1): 90-94(in Chinese).
[21] PAN Z Z, NISHIHARA H, IWAMURA S, et al. Cellulose nanofiber as a distinct structure-directing agent for xylem-like microhoneycomb monoliths by unidirectional freeze-drying [J]. ACS Nano, 2016, 10(12): 10689-10697. doi: 10.1021/acsnano.6b05808
[22] CHENG H, LI Y Z, WANG B J, et al. Chemical crosslinking reinforced flexible cellulose nanofiber-supported cryogel [J]. Cellulose, 2018, 25(1): 573-582. doi: 10.1007/s10570-017-1548-7
[23] DONG Z, ZHAO J, DU J F, et al. Radiation synthesis of spherical cellulose-based adsorbent for efficient adsorption and detoxification of Cr(VI) [J]. Radiation Physics and Chemistry, 2016, 126: 68-74. doi: 10.1016/j.radphyschem.2016.05.013
[24] LI Y Z, GRISHKEWICH N, LIU L L, et al. Construction of functional cellulose aerogels via atmospheric drying chemically cross-linked and solvent exchanged cellulose nanofibrils [J]. Chemical Engineering Journal, 2019, 366: 531-538. doi: 10.1016/j.cej.2019.02.111
[25] 周丹丹, 吴文卫, 赵婧, 等. 花生壳和松木屑制备的生物炭对Cu2+的吸附研究 [J]. 生态环境学报, 2016, 25(3): 523-530. ZHOU D D, WU W W, ZHAO J, et al. Study on the adsorption of Cu2+ to biochars produced from peanut shells and pine chips [J]. Ecology and Environmental Sciences, 2016, 25(3): 523-530(in Chinese).
[26] SARUCHI, KUMAR V. Adsorption kinetics and isotherms for the removal of rhodamine B dye and Pb+2 ions from aqueous solutions by a hybrid ion-exchanger [J]. Arabian Journal of Chemistry, 2019, 12(3): 316-329. doi: 10.1016/j.arabjc.2016.11.009
[27] GUSAIN D, SRIVASTAVA V, SHARMA Y C. Kinetic and thermodynamic studies on the removal of Cu(II) ions from aqueous solutions by adsorption on modified sand [J]. Journal of Industrial and Engineering Chemistry, 2014, 20(3): 841-847. doi: 10.1016/j.jiec.2013.06.014
[28] TRAN H N, YOU S J, CHAO H P. Insight into adsorption mechanism of cationic dye onto agricultural residues-derived hydrochars: Negligible role of π-π interaction [J]. Korean Journal of Chemical Engineering, 2017, 34(6): 1708-1720. doi: 10.1007/s11814-017-0056-7
[29] MITTAL A, AHMAD R, HASAN I. Iron oxide-impregnated dextrin nanocomposite: Synthesis and its application for the biosorption of Cr(VI) ions from aqueous solution [J]. Desalination and Water Treatment, 2016, 57(32): 15133-15145. doi: 10.1080/19443994.2015.1070764
[30] 王彤彤, 马江波, 曲东, 等. 两种木材生物炭对铜离子的吸附特性及其机制 [J]. 环境科学, 2017, 38(5): 2161-2171. WANG T T, MA J B, QU D, et al. Characteristics and mechanism of copper adsorption from aqueous solutions on biochar produced from sawdust and apple branch [J]. Environmental Science, 2017, 38(5): 2161-2171(in Chinese).
[31] HOKKANEN S, REPO E, SILLANPÄÄ M. Removal of heavy metals from aqueous solutions by succinic anhydride modified mercerized nanocellulose [J]. Chemical Engineering Journal, 2013, 223: 40-47. doi: 10.1016/j.cej.2013.02.054
[32] HOKKANEN S, REPO E, SUOPAJÄRVI T, et al. Adsorption of Ni(II), Cu(II) and Cd(II) from aqueous solutions by amino modified nanostructured microfibrillated cellulose [J]. Cellulose, 2014, 21(3): 1471-1487. doi: 10.1007/s10570-014-0240-4
[33] MAATAR W, BOUFI S. Poly(methacylic acid-co-maleic acid) grafted nanofibrillated cellulose as a reusable novel heavy metal ions adsorbent [J]. Carbohydrate Polymers, 2015, 126: 199-207. doi: 10.1016/j.carbpol.2015.03.015
[34] CHOI H Y, BAE J H, HASEGAWA Y, et al. Thiol-functionalized cellulose nanofiber membranes for the effective adsorption of heavy metal ions in water [J]. Carbohydrate Polymers, 2020, 234: 115881. doi: 10.1016/j.carbpol.2020.115881
[35] ZHANG X F, ZHAO J Q, CHENG L, et al. Acrylic acid grafted and acrylic acid/sodium humate grafted bamboo cellulose nanofibers for Cu2+adsorption [J]. RSC Adv, 2014, 4(98): 55195-55201. doi: 10.1039/C4RA08307E
[36] GENG B Y, WANG H Y, WU S, et al. Surface-tailored nanocellulose aerogels with thiol-functional moieties for highly efficient and selective removal of Hg(II) ions from water [J]. ACS Sustainable Chemistry & Engineering, 2017, 5(12): 11715-11726.
[37] ZHU C T, LIU P, MATHEW A P. Self-assembled TEMPO cellulose nanofibers: Graphene oxide-based biohybrids for water purification [J]. ACS Applied Materials & Interfaces, 2017, 9(24): 21048-21058.
[38] JI Y, WEN Y Y, WANG Z, et al. Eco-friendly fabrication of a cost-effective cellulose nanofiber-based aerogel for multifunctional applications in Cu(II) and organic pollutants removal [J]. Journal of Cleaner Production, 2020, 255: 120276. doi: 10.1016/j.jclepro.2020.120276
[39] ABOU-ZEID R E, DACRORY S, ALI K A, et al. Novel method of preparation of tricarboxylic cellulose nanofiber for efficient removal of heavy metal ions from aqueous solution [J]. International Journal of Biological Macromolecules, 2018, 119: 207-214. doi: 10.1016/j.ijbiomac.2018.07.127
[40] LIU P, OKSMAN K, MATHEW A P. Surface adsorption and self-assembly of Cu(II) ions on TEMPO-oxidized cellulose nanofibers in aqueous media [J]. Journal of Colloid and Interface Science, 2016, 464: 175-182. doi: 10.1016/j.jcis.2015.11.033
[41] SEHAQUI H, LARRAYA U P, LIU P, et al. Enhancing adsorption of heavy metal ions onto biobased nanofibers from waste pulp residues for application in wastewater treatment [J]. Cellulose, 2014, 21(4): 2831-2844. doi: 10.1007/s10570-014-0310-7
[42] SUOPAJÄRVI T, LIIMATAINEN H, KARJALAINEN M, et al. Lead adsorption with sulfonated wheat pulp nanocelluloses [J]. Journal of Water Process Engineering, 2015, 5: 136-142. doi: 10.1016/j.jwpe.2014.06.003
[43] SRIVASTAVA S, KARDAM A, RAJ K R. Nanotech reinforcement onto cellulosic fibers: Green remediation of toxic metals [J]. International Journal of Green Nanotechnology, 2012, 4(1): 46-53. doi: 10.1080/19430892.2012.654744
[44] YANG R, AUBRECHT K B, MA H Y, et al. Thiol-modified cellulose nanofibrous composite membranes for chromium (Ⅵ) and lead (Ⅱ) adsorption [J]. Polymer, 2014, 55(5): 1167-1176. doi: 10.1016/j.polymer.2014.01.043