[1] BENN T M, WESTERHOFF P. Nanoparticle silver released into water from commercially available sock fabrics [J]. Environmental Science & Technology, 2008, 42(11): 4133-4139.
[2] DAVIES R L, ETRIS S F. The development and functions of silver in water purification and disease control [J]. Catalysis Today, 1997, 36(1): 107-114. doi: 10.1016/S0920-5861(96)00203-9
[3] LIU J F, JIANG G B. Silver Nanoparticles in the Environment[M]. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015.
[4] REN D J, SMITH J A. Retention and transport of silver nanoparticles in a ceramic porous medium used for point-of-use water treatment [J]. Environmental Science & Technology, 2013, 47(8): 3825-3832.
[5] TALEBIAN S, WALLACE G G, SCHROEDER A, et al. Nanotechnology-based disinfectants and sensors for SARS-CoV-2 [J]. Nature Nanotechnology, 2020, 15(8): 618-621. doi: 10.1038/s41565-020-0751-0
[6] HANSEN S F, HANSEN O F H, NIELSEN M B. Advances and challenges towards consumerization of nanomaterials [J]. Nature Nanotechnology, 2020, 15(12): 964-965. doi: 10.1038/s41565-020-00819-7
[7] PATIÑO J E, KUHL T L, MORALES V L. Direct measurements of the forces between silver and Mica in humic substance-rich solutions [J]. Environmental Science & Technology, 2020, 54(23): 15076-15085.
[8] TEMIZEL-SEKERYAN S, HICKS A L. Emerging investigator series: Calculating size- and coating-dependent effect factors for silver nanoparticles to inform characterization factor development for usage in life cycle assessment [J]. Environmental Science:Nano, 2020, 7(9): 2436-2453. doi: 10.1039/D0EN00675K
[9] LIU C, LENG W N, VIKESLAND P J. Controlled evaluation of the impacts of surface coatings on silver nanoparticle dissolution rates [J]. Environmental Science & Technology, 2018, 52(5): 2726-2734.
[10] HE J Z, WANG D J, ZHOU D M. Transport and retention of silver nanoparticles in soil: Effects of input concentration, particle size and surface coating [J]. Science of the Total Environment, 2019, 648: 102-108. doi: 10.1016/j.scitotenv.2018.08.136
[11] PACHAPUR V L, LARIOS A D, CLEDÓN M, et al. Behavior and characterization of titanium dioxide and silver nanoparticles in soils [J]. Science of the Total Environment, 2016, 563/564: 933-943. doi: 10.1016/j.scitotenv.2015.11.090
[12] TOURINHO P S, van GESTEL C A M, LOFTS S, et al. Metal-based nanoparticles in soil: Fate, behavior, and effects on soil invertebrates [J]. Environmental Toxicology and Chemistry, 2012, 31(8): 1679-1692. doi: 10.1002/etc.1880
[13] MARAMBIO-JONES C, HOEK E M V. A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment [J]. Journal of Nanoparticle Research, 2010, 12(5): 1531-1551. doi: 10.1007/s11051-010-9900-y
[14] ROELOFS D, MAKAMA S, de BOER T E, et al. Surface coating and particle size are main factors explaining the transcriptome-wide responses of the earthworm Lumbricus rubellus to silver nanoparticles [J]. Environmental Science:Nano, 2020, 7(4): 1179-1193. doi: 10.1039/C9EN01144G
[15] BLASER S A, SCHERINGER M, MACLEOD M, et al. Estimation of cumulative aquatic exposure and risk due to silver: Contribution of nano-functionalized plastics and textiles [J]. Science of the Total Environment, 2008, 390(2/3): 396-409.
[16] FORSTNER C, ORTON T G, WANG P, et al. Wastewater treatment processing of silver nanoparticles strongly influences their effects on soil microbial diversity [J]. Environmental Science & Technology, 2020, 54(21): 13538-13547.
[17] 王震宇, 赵建, 李娜, 等. 人工纳米颗粒对水生生物的毒性效应及其机制研究进展 [J]. 环境科学, 2010, 31(6): 1409-1418. WANG Z Y, ZHAO J, LI N, et al. Review of ecotoxicity and mechanism of engineered nanoparticles to aquatic organisms [J]. Environmental Science, 2010, 31(6): 1409-1418(in Chinese).
[18] TIAN Y, GAO B, SILVERA-BATISTA C, et al. Transport of engineered nanoparticles in saturated porous media [J]. Journal of Nanoparticle Research, 2010, 12(7): 2371-2380. doi: 10.1007/s11051-010-9912-7
[19] REDMAN J A, WALKER S L, ELIMELECH M. Bacterial adhesion and transport in porous media: Role of the secondary energy minimum [J]. Environmental Science & Technology, 2004, 38(6): 1777-1785.
[20] SHEN C Y, LI B G, HUANG Y F, et al. Kinetics of coupled primary- and secondary-minimum deposition of colloids under unfavorable chemical conditions [J]. Environmental Science & Technology, 2007, 41(20): 6976-6982.
[21] BRADFORD S A, SIMUNEK J, BETTAHAR M, et al. Modeling colloid attachment, straining, and exclusion in saturated porous media [J]. Environmental Science & Technology, 2003, 37(10): 2242-2250.
[22] BECKER M D, WANG Y G, PENNELL K D, et al. A multi-constituent site blocking model for nanoparticle and stabilizing agent transport in porous media [J]. Environmental Science:Nano, 2015, 2(2): 155-166. doi: 10.1039/C4EN00176A
[23] HAHN M W, O'MELIAE C R. Deposition and reentrainment of Brownian particles in porous media under unfavorable chemical conditions: Some concepts and applications [J]. Environmental Science & Technology, 2004, 38(1): 210-220.
[24] OLENIN A Y, KRUTYAKOV Y A, KUDRINSKII A A, et al. Formation of surface layers on silver nanoparticles in aqueous and water-organic media [J]. Colloid Journal, 2008, 70(1): 71-76. doi: 10.1134/S1061933X08010110
[25] SI S, MANDAL T K. Tryptophan-based peptides to synthesize gold and silver nanoparticles: A mechanistic and kinetic study [J]. Chemistry (Weinheim an Der Bergstrasse, Germany), 2007, 13(11): 3160-3168.
[26] AMRI N E, ROGER K. Polyvinylpyrrolidone (PVP) impurities drastically impact the outcome of nanoparticle syntheses [J]. Journal of Colloid and Interface Science, 2020, 576: 435-443. doi: 10.1016/j.jcis.2020.04.113
[27] PRYSHCHEPA O, POMASTOWSKI P, BUSZEWSKI B. Silver nanoparticles: Synthesis, investigation techniques, and properties [J]. Advances in Colloid and Interface Science, 2020, 284: 102246. doi: 10.1016/j.cis.2020.102246
[28] TOLAYMAT T M, EL BADAWY A M, GENAIDY A, et al. An evidence-based environmental perspective of manufactured silver nanoparticle in syntheses and applications: A systematic review and critical appraisal of peer-reviewed scientific papers [J]. Science of the Total Environment, 2010, 408(5): 999-1006. doi: 10.1016/j.scitotenv.2009.11.003
[29] EL BADAWY A M, HASSAN A A, SCHECKEL K G, et al. Key factors controlling the transport of silver nanoparticles in porous media [J]. Environmental Science & Technology, 2013, 47(9): 4039-4045.
[30] LIN S H, CHENG Y W, LIU J, et al. Polymeric coatings on silver nanoparticles hinder autoaggregation but enhance attachment to uncoated surfaces [J]. Langmuir:the ACS Journal of Surfaces and Colloids, 2012, 28(9): 4178-4186. doi: 10.1021/la202884f
[31] SONG J E, PHENRAT T, MARINAKOS S, et al. Hydrophobic interactions increase attachment of gum Arabic- and PVP-coated Ag nanoparticles to hydrophobic surfaces [J]. Environmental Science & Technology, 2011, 45(14): 5988-5995.
[32] AKAIGHE N, DEPNER S W, BANERJEE S, et al. Transport and deposition of Suwannee River Humic Acid/Natural Organic Matter formed silver nanoparticles on silica matrices: The influence of solution pH and ionic strength [J]. Chemosphere, 2013, 92(4): 406-412. doi: 10.1016/j.chemosphere.2012.12.077
[33] HEDBERG J, OROMIEH A G, KLEJA D B, et al. Sorption and dissolution of bare and coated silver nanoparticles in soil suspensions: Influence of soil and particle characteristics [J]. Journal of Environmental Science and Health. Part A, Toxic/Hazardous Substances & Environmental Engineering, 2015, 50(9): 891-900.
[34] WANG K K, ZHANG Y Q, SUN B B, et al. New insights into the enhanced transport of uncoated and polyvinylpyrrolidone-coated silver nanoparticles in saturated porous media by dissolved black carbons [J]. Chemosphere, 2021, 283: 131159. doi: 10.1016/j.chemosphere.2021.131159
[35] QUANG D V, SARAWADE P B, HILONGA A, et al. Preparation of silver nanoparticle containing silica micro beads and investigation of their antibacterial activity [J]. Applied Surface Science, 2011, 257(15): 6963-6970. doi: 10.1016/j.apsusc.2011.03.041
[36] CHENG K L. The negative charge of nanoparticles [J]. Microchemical Journal, 2006, 82(1): 119-120. doi: 10.1016/j.microc.2005.11.002
[37] LAU B L T, HOCKADAY W C, IKUMA K, et al. A preliminary assessment of the interactions between the capping agents of silver nanoparticles and environmental organics [J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2013, 435: 22-27.
[38] XIAO Y, WIESNER M R. Transport and retention of selected engineered nanoparticles by porous media in the presence of a biofilm [J]. Environmental Science & Technology, 2013, 47(5): 2246-2253.
[39] SAGEE O, DROR I, BERKOWITZ B. Transport of silver nanoparticles (AgNPs) in soil [J]. Chemosphere, 2012, 88(5): 670-675. doi: 10.1016/j.chemosphere.2012.03.055
[40] LIN S H, CHENG Y W, BOBCOMBE Y, et al. Deposition of silver nanoparticles in geochemically heterogeneous porous media: Predicting affinity from surface composition analysis [J]. Environmental Science & Technology, 2011, 45(12): 5209-5215.
[41] PARK C M, HEO J, HER N, et al. Modeling the effects of surfactant, hardness, and natural organic matter on deposition and mobility of silver nanoparticles in saturated porous media [J]. Water Research, 2016, 103: 38-47. doi: 10.1016/j.watres.2016.07.022
[42] THIO B J R, MONTES M O, MAHMOUD M A, et al. Mobility of capped silver nanoparticles under environmentally relevant conditions [J]. Environmental Science & Technology, 2012, 46(13): 6985-6991.
[43] ZHANG H, ZHANG C. Transport of silver nanoparticles capped with different stabilizers in water saturated porous media [J]. Journal of Materials and Environmental Science, 2014, 5(1): 231-236.
[44] YANG X Y, YIN Z Y, CHEN F M, et al. Organic matter induced mobilization of polymer-coated silver nanoparticles from water-saturated sand [J]. Science of the Total Environment, 2015, 529: 182-190. doi: 10.1016/j.scitotenv.2015.05.066
[45] 高素娟, 方涛, 王广召, 等. 纳米银在水-沉积物中的迁移机制研究 [J]. 水生生物学报, 2015, 39(2): 375-381. doi: 10.7541/2015.49 GAO S J, FANG T, WANG G Z, et al. The transportation of silver nanoparticles between water and sediments [J]. Acta Hydrobiologica Sinica, 2015, 39(2): 375-381(in Chinese). doi: 10.7541/2015.49
[46] HOPPE M, MIKUTTA R, UTERMANN J, et al. Retention of sterically and electrosterically stabilized silver nanoparticles in soils [J]. Environmental Science & Technology, 2014, 48(21): 12628-12635.
[47] ZHU T R, LAWLER D F, CHEN Y Q, et al. Effects of natural organic matter and sulfidation on the flocculation and filtration of silver nanoparticles [J]. Environmental Science:Nano, 2016, 3(6): 1436-1446. doi: 10.1039/C6EN00266H
[48] EL BADAWY A M, SCHECKEL K G, SUIDAN M, et al. The impact of stabilization mechanism on the aggregation kinetics of silver nanoparticles [J]. Science of the Total Environment, 2012, 429: 325-331. doi: 10.1016/j.scitotenv.2012.03.041
[49] WANG D J, GE L Q, HE J Z, et al. Hyperexponential and nonmonotonic retention of polyvinylpyrrolidone-coated silver nanoparticles in an Ultisol [J]. Journal of Contaminant Hydrology, 2014, 164: 35-48. doi: 10.1016/j.jconhyd.2014.05.007
[50] LIANG Y, BRADFORD S A, SIMUNEK J, et al. Sensitivity of the transport and retention of stabilized silver nanoparticles to physicochemical factors [J]. Water Research, 2013, 47(7): 2572-2582. doi: 10.1016/j.watres.2013.02.025
[51] KYRYCHENKO A, KORSUN O M, GUBIN I I, et al. Atomistic simulations of coating of silver nanoparticles with poly(vinylpyrrolidone) oligomers: Effect of oligomer chain length [J]. The Journal of Physical Chemistry C, 2015, 119(14): 7888-7899. doi: 10.1021/jp510369a
[52] TAGHAVY A, MITTELMAN A, WANG Y G, et al. Mathematical modeling of the transport and dissolution of citrate-stabilized silver nanoparticles in porous media [J]. Environmental Science & Technology, 2013, 47(15): 8499-8507.
[53] KUMAHOR S K, HRON P, METREVELI G, et al. Transport of citrate-coated silver nanoparticles in unsaturated sand [J]. Science of the Total Environment, 2015, 535: 113-121. doi: 10.1016/j.scitotenv.2015.03.023
[54] KUMAHOR S K, HRON P, METREVELI G, et al. Transport of soil-aged silver nanoparticles in unsaturated sand [J]. Journal of Contaminant Hydrology, 2016, 195: 31-39. doi: 10.1016/j.jconhyd.2016.10.001
[55] EL BADAWY A M, LUXTON T P, SILVA R G, et al. Impact of environmental conditions (pH, ionic strength, and electrolyte type) on the surface charge and aggregation of silver nanoparticles suspensions [J]. Environmental Science & Technology, 2010, 44(4): 1260-1266.
[56] FLORY J, KANEL S R, RACZ L, et al. Influence of pH on the transport of silver nanoparticles in saturated porous media: Laboratory experiments and modeling [J]. Journal of Nanoparticle Research, 2013, 15(3): 1484. doi: 10.1007/s11051-013-1484-x
[57] LIANG Y, ZHOU J N, DONG Y W, et al. Evidence for the critical role of nanoscale surface roughness on the retention and release of silver nanoparticles in porous media [J]. Environmental Pollution, 2020, 258: 113803. doi: 10.1016/j.envpol.2019.113803
[58] ELLIS L J A, VALSAMI-JONES E, LEAD J R, et al. Impact of surface coating and environmental conditions on the fate and transport of silver nanoparticles in the aquatic environment [J]. Science of the Total Environment, 2016, 568: 95-106. doi: 10.1016/j.scitotenv.2016.05.199
[59] MITZEL M R, TUFENKJI N. Transport of industrial PVP-stabilized silver nanoparticles in saturated quartz sand coated with Pseudomonas aeruginosa PAO1 biofilm of variable age [J]. Environmental Science & Technology, 2014, 48(5): 2715-2723.
[60] REN D J, SMITH J A. Proteinate-capped silver nanoparticle transport in water-saturated sand [J]. Journal of Environmental Engineering, 2013, 139(6): 781-787. doi: 10.1061/(ASCE)EE.1943-7870.0000684
[61] LIANG Y, BRADFORD S A, SIMUNEK J, et al. Retention and remobilization of stabilized silver nanoparticles in an undisturbed loamy sand soil [J]. Environmental Science & Technology, 2013, 47(21): 12229-12237.
[62] MAKSELON J, ZHOU D, ENGELHARDT I, et al. Experimental and numerical investigations of silver nanoparticle transport under variable flow and ionic strength in soil [J]. Environmental Science & Technology, 2017, 51(4): 2096-2104.
[63] YECHESKEL Y, DROR I, BERKOWITZ B. Silver nanoparticle (Ag-NP) retention and release in partially saturated soil: Column experiments and modelling [J]. Environmental Science:Nano, 2018, 5(2): 422-435. doi: 10.1039/C7EN00990A
[64] BRAUN A, KLUMPP E, AZZAM R, et al. Transport and deposition of stabilized engineered silver nanoparticles in water saturated loamy sand and silty loam [J]. Science of the Total Environment, 2015, 535: 102-112. doi: 10.1016/j.scitotenv.2014.12.023
[65] ADRIAN Y F, SCHNEIDEWIND U, BRADFORD S A, et al. Transport and retention of surfactant- and polymer-stabilized engineered silver nanoparticles in silicate-dominated aquifer material [J]. Environmental Pollution, 2018, 236: 195-207. doi: 10.1016/j.envpol.2018.01.011
[66] CHEN F M, YUAN X M, SONG Z F, et al. Gram-negative Escherichia coli promotes deposition of polymer-capped silver nanoparticles in saturated porous media [J]. Environmental Science:Nano, 2018, 5(6): 1495-1505. doi: 10.1039/C8EN00067K
[67] XIA T J, QI Y, LIU J, et al. Cation-inhibited transport of graphene oxide nanomaterials in saturated porous media: The hofmeister effects [J]. Environmental Science & Technology, 2017, 51(2): 828-837.
[68] NEUKUM C, BRAUN A, AZZAM R. Transport of engineered silver (Ag) nanoparticles through partially fractured sandstones [J]. Journal of Contaminant Hydrology, 2014, 164: 181-192. doi: 10.1016/j.jconhyd.2014.05.012
[69] BRADFORD S A, SIMUNEK J, WALKER S L. Transport and straining of E. coli O157: H7 in saturated porous media[J]. Water Resources Research, 2006, 42(12),doi:10.1029/2005WR004805, 2006.
[70] JEREZ J, FLURY M, SHANG J Y, et al. Coating of silica sand with aluminosilicate clay [J]. Journal of Colloid and Interface Science, 2006, 294(1): 155-164. doi: 10.1016/j.jcis.2005.07.017
[71] SALEH N B, PFEFFERLE L D, ELIMELECH M. Influence of biomacromolecules and humic acid on the aggregation kinetics of single-walled carbon nanotubes [J]. Environmental Science & Technology, 2010, 44(7): 2412-2418.
[72] HOU J, ZHANG M Z, WANG P F, et al. Transport, retention, and long-term release behavior of polymer-coated silver nanoparticles in saturated quartz sand: The impact of natural organic matters and electrolyte [J]. Environmental Pollution, 2017, 229: 49-59. doi: 10.1016/j.envpol.2017.05.059
[73] STEVENSON F J. Humus chemistry genesis, composition, reactions[M]. John Wiley & Sons, 1994.
[74] YANG X Y, LIN S H, WIESNER M R. Influence of natural organic matter on transport and retention of polymer coated silver nanoparticles in porous media [J]. Journal of Hazardous Materials, 2014, 264: 161-168. doi: 10.1016/j.jhazmat.2013.11.025
[75] CHINNAPONGSE S L, MACCUSPIE R I, HACKLEY V A. Persistence of singly dispersed silver nanoparticles in natural freshwaters, synthetic seawater, and simulated estuarine waters [J]. Science of the Total Environment, 2011, 409(12): 2443-2450. doi: 10.1016/j.scitotenv.2011.03.020
[76] KANEL S R, FLORY J, MEYERHOEFER A, et al. Influence of natural organic matter on fate and transport of silver nanoparticles in saturated porous media: Laboratory experiments and modeling [J]. Journal of Nanoparticle Research, 2015, 17(3): 1-13.
[77] NAKANE M, AJIOKA T, YAMASHITA Y. Distribution and sources of dissolved black carbon in surface waters of the Chukchi Sea, Bering Sea, and the north Pacific Ocean [J]. Frontiers in Earth Science, 2017, 5: 34. doi: 10.3389/feart.2017.00034
[78] QU X L, FU H Y, MAO J D, et al. Chemical and structural properties of dissolved black carbon released from biochars [J]. Carbon, 2016, 96: 759-767. doi: 10.1016/j.carbon.2015.09.106
[79] DEGENKOLB L, METREVELI G, PHILIPPE A, et al. Retention and remobilization mechanisms of environmentally aged silver nanoparticles in an artificial riverbank filtration system [J]. Science of the Total Environment, 2018, 645: 192-204. doi: 10.1016/j.scitotenv.2018.07.079
[80] WANG D J, JAISI D P, YAN J, et al. Transport and retention of polyvinylpyrrolidone-coated silver nanoparticles in natural soils [J]. Vadose Zone Journal, 2015, 14(7): 1-13.
[81] CORNELIS G, PANG L P, DOOLETTE C, et al. Transport of silver nanoparticles in saturated columns of natural soils [J]. Science of the Total Environment, 2013, 463/464: 120-130. doi: 10.1016/j.scitotenv.2013.05.089
[82] JACOBSON A R, MCBRIDE M B, BAVEYE P, et al. Environmental factors determining the trace-level sorption of silver and thallium to soils [J]. Science of the Total Environment, 2005, 345(1/2/3): 191-205.
[83] RAHMATPOUR S, SHIRVANI M, MOSADDEGHI M R, et al. Retention of silver nano-particles and silver ions in calcareous soils: Influence of soil properties [J]. Journal of Environmental Management, 2017, 193: 136-145.
[84] ADRIAN Y F, SCHNEIDEWIND U, BRADFORD S A, et al. Transport and retention of engineered silver nanoparticles in carbonate-rich sediments in the presence and absence of soil organic matter [J]. Environmental Pollution, 2019, 255: 113124. doi: 10.1016/j.envpol.2019.113124
[85] WANG R, DU H, WANG Y J, et al. Retention of silver nanoparticles and silver ion to natural soils: Effects of soil physicochemical properties [J]. Journal of Soils and Sediments, 2018, 18(7): 2491-2499. doi: 10.1007/s11368-018-1918-2
[86] MAHDI K N M, COMMELIN M, PETERS R J B, et al. Transport of silver nanoparticles by runoff and erosion - A flume experiment [J]. Science of the Total Environment, 2017, 601/602: 1418-1426. doi: 10.1016/j.scitotenv.2017.06.020
[87] HOPPE M, MIKUTTA R, UTERMANN J, et al. Remobilization of sterically stabilized silver nanoparticles from farmland soils determined by column leaching [J]. European Journal of Soil Science, 2015, 66(5): 898-909. doi: 10.1111/ejss.12270
[88] MAKSELON J, SIEBERS N, MEIER F, et al. Role of rain intensity and soil colloids in the retention of surfactant-stabilized silver nanoparticles in soil [J]. Environmental Pollution, 2018, 238: 1027-1034. doi: 10.1016/j.envpol.2018.02.025
[89] NGWENYA B T, CURRY P, KAPETAS L. Transport and viability of Escherichia coli cells in clean and iron oxide coated sand following coating with silver nanoparticles [J]. Journal of Contaminant Hydrology, 2015, 179: 35-46. doi: 10.1016/j.jconhyd.2015.05.005