[1] MARABOTTINI R, STAZI S R, PAPP R, et al. Mobility and distribution of arsenic in contaminated mine soils and its effects on the microbial pool [J]. Ecotoxicology and Environmental Safety, 2013, 96: 147-153. doi: 10.1016/j.ecoenv.2013.06.016
[2] 张楠, 韦朝阳, 杨林生. 淡水湖泊生态系统中砷的赋存与转化行为研究进展 [J]. 生态学报, 2013, 33(2): 337-347. doi: 10.5846/stxb201111171751 ZHANG N, WEI C Y, YANG L S. Advance in research on the occurrence and transformation of arsenic in the freshwater lake ecosystem [J]. Acta Ecologica Sinica, 2013, 33(2): 337-347(in Chinese). doi: 10.5846/stxb201111171751
[3] 吴丰昌, 孟伟, 宋永会, 等. 中国湖泊水环境基准的研究进展 [J]. 环境科学学报, 2008, 28(12): 2385-2393. doi: 10.3321/j.issn:0253-2468.2008.12.001 WU F C, MENG W, SONG Y H, et al. Research progress in lake water quality criteria in China [J]. Acta Scientiae Circumstantiae, 2008, 28(12): 2385-2393(in Chinese). doi: 10.3321/j.issn:0253-2468.2008.12.001
[4] SCHAEFFER R, FRANCESCONI K A, KIENZL N, et al. Arsenic speciation in freshwater organisms from the river Danube in Hungary[J]. Talanta. 2006, 69(4): 856-865.
[5] TISLER T, ZAGORC-KONCAN J. Acute and chronic toxicity of arsenic to some aquatic organisms [J]. Bulletin of Environmental Contamination and Toxicology, 2002, 69(3): 421-429. doi: 10.1007/s00128-002-0079-5
[6] HUNTER D A, GOESSLER W, FRANCESCONI K A. Uptake of arsenate, trimethylarsine oxide, and arsenobetaine by the shrimp Crangon crangon [J]. Marine Biology, 1998, 131(3): 543-552. doi: 10.1007/s002270050346
[7] KUROIWA T, OHKI A, NAKA K, et al. Biomethylation and biotransformation of arsenic in a freshwater food chain: Green alga (Chlorella vulgaris) shrimp (Neocaridina denticulata) killifish (Oryzias iatipes) [J]. Applied Organometallic Chemistry, 1994, 8(4): 325-333. doi: 10.1002/aoc.590080407
[8] ZHANG W, WANG W X, ZHANG L. Comparison of bioavailability and biotransformation of inorganic and organic arsenic to two marine fish [J]. Environmental Science & Technology, 2016, 50(5): 2413-2423.
[9] KNAUER K, BEHRA R, HEMOND H. Toxicity of inorganic and methylated arsenic to algal communities from lakes along an arsenic contamination gradient [J]. Aquatic Toxicology, 1999, 46(3/4): 221-230.
[10] ZHANG W, CHEN L Z, ZHOU Y Y, et al. Biotransformation of inorganic arsenic in a marine herbivorous fish Siganus fuscescens after dietborne exposure [J]. Chemosphere, 2016, 147: 297-304. doi: 10.1016/j.chemosphere.2015.12.121
[11] CUI D, ZHANG P, LI H P, et al. The dynamic effects of different inorganic arsenic species in crucian carp (Carassius auratus) liver during chronic dietborne exposure: Bioaccumulation, biotransformation and oxidative stress [J]. Science of the Total Environment, 2020, 727: 138737. doi: 10.1016/j.scitotenv.2020.138737
[12] CHEN C Y, PICKHARDT P C, XU M Q, et al. Mercury and arsenic bioaccumulation and eutrophication in Baiyangdian Lake, China [J]. Water, Air, and Soil Pollution, 2008, 190(1/2/3/4): 115-127.
[13] FOUST R D Jr, BAUER A M, COSTANZA-ROBINSON M, et al. Arsenic transfer and biotransformation in a fully characterized freshwater food web [J]. Coordination Chemistry Reviews, 2016, 306: 558-565. doi: 10.1016/j.ccr.2015.03.005
[14] 安艳, 李贞, 王三祥, 等. HPLC-ICP-MS在砷形态分析中应用 [J]. 中国公共卫生, 2008, 24(12): 1416-1418. doi: 10.3321/j.issn:1001-0580.2008.12.065 AN Y, LI Z, WANG S X, et al. Application of HPLC-ICP-MS in speciation analysis of arsenic [J]. Chinese Journal of Public Health, 2008, 24(12): 1416-1418(in Chinese). doi: 10.3321/j.issn:1001-0580.2008.12.065
[15] ERICKSON R J, MOUNT D R, HIGHLAND T L, et al. The effects of arsenic speciation on accumulation and toxicity of dietborne arsenic exposures to rainbow trout [J]. Aquatic Toxicology, 2019, 210: 227-241. doi: 10.1016/j.aquatox.2019.03.001
[16] 王谦, 成水平. 大型水生植物修复重金属污染水体研究进展 [J]. 环境科学与技术, 2010, 33(5): 96-102. doi: 10.3969/j.issn.1003-6504.2010.05.022 WANG Q, CHENG S P. Review on phytoremediation of heavy metal polluted water by macrophytes [J]. Environmental Science & Technology, 2010, 33(5): 96-102(in Chinese). doi: 10.3969/j.issn.1003-6504.2010.05.022
[17] XU X Y, MCGRATH S P, ZHAO F J. Rapid reduction of arsenate in the medium mediated by plant roots[J]. The New Phytologist, 2007(3), 176: 590-599.
[18] PICKERING I J, PRINCE R C, GEORGE M J, et al. Reduction and coordination of arsenic in Indian mustard [J]. Plant Physiology, 2000, 122(4): 1171-1178. doi: 10.1104/pp.122.4.1171
[19] 黄永炳, 王丽丽, 李晓娟, 等. 砷形态转化及其环境效应研究 [J]. 环境污染与防治, 2013, 35(1): 16-19,34. doi: 10.3969/j.issn.1001-3865.2013.01.004 HUANG Y B, WANG L L, LI X J, et al. Transformation of arsenic species and its environmental effect [J]. Environmental Pollution & Control, 2013, 35(1): 16-19,34(in Chinese). doi: 10.3969/j.issn.1001-3865.2013.01.004
[20] KHANG H V, HATAYAMA M, INOUE C. Arsenic accumulation by aquatic macrophyte coontail (Ceratophyllum demersum L. ) exposed to arsenite, and the effect of iron on the uptake of arsenite and arsenate [J]. Environmental and Experimental Botany, 2012, 83: 47-52. doi: 10.1016/j.envexpbot.2012.04.008
[21] XUE P Y, YAN C Z. Arsenic accumulation and translocation in the submerged macrophyte Hydrilla verticillata (1. f. ) royle [J]. Chemosphere, 2011, 85(7): 1176-1181. doi: 10.1016/j.chemosphere.2011.09.051
[22] SÖRÖS C, BODÓ E T, FODOR P, et al. The potential of arsenic speciation in molluscs for environmental monitoring [J]. Analytical and Bioanalytical Chemistry, 2003, 377(1): 25-31. doi: 10.1007/s00216-003-1971-5
[23] 刘淑晗, 张海燕, 娄晓祎, 等. 高效液相色谱-(紫外)氢化物发生原子荧光光谱法测定南极磷虾及其制品中6种砷形态 [J]. 分析测试学报, 2019, 38(9): 1085-1090. doi: 10.3969/j.issn.1004-4957.2019.09.009 LIU S H, ZHANG H Y, LOU X Y, et al. Determination of six arsenic speciations in Antarctic krill and its products using high performance liquid chromatography-(ultraviolet)hydride generation-atomic fluorescence spectrometry [J]. Journal of Instrumental Analysis, 2019, 38(9): 1085-1090(in Chinese). doi: 10.3969/j.issn.1004-4957.2019.09.009
[24] 赵艳芳, 康绪明, 宁劲松, 等. 虾蛄可食组织中镉和砷的形态及分布特征 [J]. 食品科学, 2020, 41(8): 282-287. doi: 10.7506/spkx1002-6630-20190119-229 ZHAO Y F, KANG X M, NING J S, et al. Speciation and distribution characteristics of cadmium and arsenic in the edible tissues of Oratosquilla oratoria [J]. Food Science, 2020, 41(8): 282-287(in Chinese). doi: 10.7506/spkx1002-6630-20190119-229
[25] CUI D, ZHANG P, LI H P, et al. The dynamic changes of arsenic biotransformation and bioaccumulation in muscle of freshwater food fish crucian carp during chronic dietborne exposure [J]. Journal of Environmental Sciences, 2021, 100: 74-81. doi: 10.1016/j.jes.2020.07.005
[26] ZHANG W, HUANG L M, WANG W X. Arsenic bioaccumulation in a marine juvenile fish Terapon jarbua [J]. Aquatic Toxicology, 2011, 105(3/4): 582-588.
[27] FANG T, LU W X, CUI K, et al. Distribution, bioaccumulation and trophic transfer of trace metals in the food web of Chaohu Lake, Anhui, China [J]. Chemosphere, 2019, 218: 1122-1130. doi: 10.1016/j.chemosphere.2018.10.107
[28] MAHER W A, FOSTER S D, TAYLOR A M, et al. Arsenic distribution and species in two Zostera capricorni seagrass ecosystems, New South Wales, Australia [J]. Environmental. Chemistry, 2011, 8(1): 9. doi: 10.1071/EN10087
[29] JIA Y Y, WANG L, LI S, et al. Species-specific bioaccumulation and correlated health risk of arsenic compounds in freshwater fish from a typical mine-impacted river [J]. Science of the Total Environment, 2018, 625: 600-607. doi: 10.1016/j.scitotenv.2017.12.328
[30] RADABAUGH T R, APOSHIAN H V. Enzymatic reduction of arsenic compounds in mammalian systems: Reduction of arsenate to arsenite by human liver arsenate reductase [J]. Chemical Research in Toxicology, 2000, 13(1): 26-30. doi: 10.1021/tx990115k
[31] FRANCESCONI K A, EDMONDS J S, STICK R V. Accumulation of arsenic in yelloweye mullet (Aldrichetta forsteri) following oral administration of organoarsenic compounds and arsenate [J]. Science of the Total Environment, 1989, 79(1): 59-67. doi: 10.1016/0048-9697(89)90053-3
[32] HELLWEGER F L, LALL U. Modeling the effect of algal dynamics on arsenic speciation in Lake Biwa [J]. Environmental Science & Technology, 2004, 38(24): 6716-6723.
[33] ZHANG W, HUANG L M, WANG W X. Biotransformation and detoxification of inorganic arsenic in a marine juvenile fish Terapon jarbua after waterborne and dietborne exposure [J]. Journal of Hazardous Materials, 2012, 221/222: 162-169. doi: 10.1016/j.jhazmat.2012.04.027
[34] MAEDA S, MAWATARI K, OHKI A, et al. Arsenic metabolism in a freshwater food chain: Blue-green alga (Nostoc sp. )→shrimp (Neocaridina denticulata)→carp (Cyprinus carpio) [J]. Applied Organometallic Chemistry, 1993, 7(7): 467-476. doi: 10.1002/aoc.590070705
[35] BEARS H, RICHARDS J G, SCHULTE P M. Arsenic exposure alters hepatic arsenic species composition and stress-mediated gene expression in the common killifish (Fundulus heteroclitus) [J]. Aquatic Toxicology, 2006, 77(3): 257-266. doi: 10.1016/j.aquatox.2005.12.008
[36] CUI D, ZHANG P, LI H P, et al. Biotransformation of dietary inorganic arsenic in a freshwater fish Carassius auratus and the unique association between arsenic dimethylation and oxidative damage [J]. Journal of Hazardous Materials, 2020, 391: 122153. doi: 10.1016/j.jhazmat.2020.122153
[37] SUHENDRAYATNA, OHKI A, NAKAJIMA T, et al. Studies on the accumulation and transformation of arsenic in freshwater organisms I. Accumulation, transformation and toxicity of arsenic compounds on the Japanese Medaka, Oryzias latipes [J]. Chemosphere, 2002, 46(2): 319-324. doi: 10.1016/S0045-6535(01)00084-4
[38] SUHENDRAYATNA, OHKI A, NAKAJIMA T, et al. Studies on the accumulation and transformation of arsenic in freshwater organisms II. Accumulation and transformation of arsenic compounds by Tilapia mossambica [J]. Chemosphere, 2002, 46(2): 325-331. doi: 10.1016/S0045-6535(01)00085-6