[1] |
BAUMGARTNER J, SCHAUER J J, EZZATI M, et al. Indoor air pollution and blood pressure in adult women living in rural China [J]. Environmental Health Perspectives, 2011, 119(10): 1390-1395. doi: 10.1289/ehp.1003371
|
[2] |
CHAN C K, YAO X. Air pollution in mega cities in China [J]. Atmospheric Environment, 2008, 42(1): 1-42. doi: 10.1016/j.atmosenv.2007.09.003
|
[3] |
BRUNEKREEF B, FORSBERG B. Epidemiological evidence of effects of coarse airborne particles on health [J]. The European Respiratory Journal, 2005, 26(2): 309-318. doi: 10.1183/09031936.05.00001805
|
[4] |
MAUDERLY J L, CHOW J C. Health effects of organic aerosols [J]. Inhalation Toxicology, 2008, 20(3): 257-288. doi: 10.1080/08958370701866008
|
[5] |
LU C, SONG G Q, LIN J M. Reactive oxygen species and their chemiluminescence-detection methods [J]. TrAC Trends in Analytical Chemistry, 2006, 25(10): 985-995. doi: 10.1016/j.trac.2006.07.007
|
[6] |
MATÉS J M, SEGURA J M, PÉREZ-GÓMEZ C, et al. Antioxidant enzymatic activities in human blood cells after an allergic reaction to pollen or house dust mite [J]. Blood Cells Molecules and Diseases, 1999, 25(2): 103-109. doi: 10.1006/bcmd.1999.0234
|
[7] |
LI N, SIOUTAS C, CHO A, et al. Ultrafine particulate pollutants induce oxidative stress and mitochondrial damage [J]. Environmental Health Perspectives, 2003, 111(4): 455-460. doi: 10.1289/ehp.6000
|
[8] |
AYRES J G, BORM P, CASSEE F R, et al. Evaluating the toxicity of airborne particulate matter and nanoparticles by measuring oxidative stress potential—A workshop report and consensus statement [J]. Inhalation Toxicology, 2008, 20(1): 75-99. doi: 10.1080/08958370701665517
|
[9] |
SQUADRITO G L, CUETO R, DELLINGER B, et al. Quinoid redox cycling as a mechanism for sustained free radical generation by inhaled airborne particulate matter [J]. Free Radical Biology and Medicine, 2001, 31(9): 1132-1138. doi: 10.1016/S0891-5849(01)00703-1
|
[10] |
KELLY F J, FUSSELL J C. Size, source and chemical composition as determinants of toxicity attributable to ambient particulate matter [J]. Atmospheric Environment, 2012, 60: 504-526. doi: 10.1016/j.atmosenv.2012.06.039
|
[11] |
DONALDSON K, BROWN D, CLOUTER A, et al. The pulmonary toxicology of ultrafine particles [J]. Journal of Aerosol Medicine, 2002, 15(2): 213-220. doi: 10.1089/089426802320282338
|
[12] |
NEL A. Air pollution-related illness: Effects of particles [J]. Science, 2005, 308(5723): 804-806. doi: 10.1126/science.1108752
|
[13] |
POPE C A, DOCKERY D W. Health effects of fine particulate air pollution: Lines that connect [J]. Journal of the Air and Waste Management Association, 2006, 56(6): 709-742. doi: 10.1080/10473289.2006.10464485
|
[14] |
CHO A K, SIOUTAS C, MIGUEL A H, et al. Redox activity of airborne particulate matter at different sites in the Los Angeles Basin [J]. Environmental Research, 2005, 99(1): 40-47. doi: 10.1016/j.envres.2005.01.003
|
[15] |
LAKEY P, BERKEMEIER T, TONG H, et al. Chemical exposure-response relationship between air pollutants and reactive oxygen species in the human respiratory tract [J]. Scientific Reports, 2016, 6: 32916. doi: 10.1038/srep32916
|
[16] |
SHIRAIWA M, SOSEDOVA Y, ROUVIÈRE A, et al. The role of long-lived reactive oxygen intermediates in the reaction of ozone with aerosol particles [J]. Nature Chemistry, 2011, 3(4): 291-295. doi: 10.1038/nchem.988
|
[17] |
ZIEMANN P J, ATKINSON R. ChemInform abstract: Kinetics, products, and mechanisms of secondary organic aerosol formation [J]. ChemInform, 2012, 43(48): 6582-6605.
|
[18] |
CHEN X, HOPKE P K, CARTER W P L. Secondary organic aerosol from ozonolysis of biogenic volatile organic compounds: Chamber studies of particle and reactive oxygen species formation [J]. Environmental Science & Technology, 2011, 45(1): 276-282.
|
[19] |
COOPER O R, PARRISH D D, STOHL A, et al, et al. Revisiting the evidence of increasing springtime ozone mixing ratios in the free troposphere over western North America [J]. Geophysical Research Letters, 2015, 42(20): 8719-8728. doi: 10.1002/2015GL065311
|
[20] |
PÖSCHL U, SHIRAIWA M. Multiphase chemistry at the atmosphere–biosphere interface influencing climate and public health in the anthropocene [J]. Chemical Reviews, 2015, 115(10): 4440-4475. doi: 10.1021/cr500487s
|
[21] |
TUET W Y, FOK S, VERMA V, et al. Dose-dependent intracellular reactive oxygen and nitrogen species (ROS/RNS) production from particulate matter exposure: Comparison to oxidative potential and chemical composition [J]. Atmospheric Environment, 2016, 144: 335-344. doi: 10.1016/j.atmosenv.2016.09.005
|
[22] |
TUET W Y, CHEN Y L, FOK S, et al. Inflammatory responses to secondary organic aerosols (SOA) generated from biogenic and anthropogenic precursors [J]. Atmospheric Chemistry and Physics, 2017, 17(18): 11423-11440. doi: 10.5194/acp-17-11423-2017
|
[23] |
GODRI K J, DUGGAN S T, FULLER G W, et al. Particulate matter oxidative potential from waste transfer station activity [J]. Environmental Health Perspectives, 2010, 118(4): 493-498. doi: 10.1289/ehp.0901303
|
[24] |
GODRI K J, HARRISON R M, EVANS T, et al. Increased oxidative burden associated with traffic component of ambient particulate matter at roadside and urban background schools sites in London [J]. Plos One, 2011, 6(7): e21961. doi: 10.1371/journal.pone.0021961
|
[25] |
CALAS A, UZU G, KELLY F J, et al. Comparison between five acellular oxidative potential measurement assays performed with detailed chemistry on PM10 samples from the city of Chamonix (France) [J]. Atmospheric Chemistry and Physics, 2018, 18(11): 7863-7875. doi: 10.5194/acp-18-7863-2018
|
[26] |
VISENTIN M, PAGNONI A, SARTI E, et al. Urban PM2.5 oxidative potential: Importance of chemical species and comparison of two spectrophotometric cell-free assays [J]. Environmental Pollution, 2016, 219: 72-79. doi: 10.1016/j.envpol.2016.09.047
|
[27] |
MONTESINOS V N, SLEIMAN M, COHN S, et al. Detection and quantification of reactive oxygen species (ROS) in indoor air [J]. Talanta, 2015, 138: 20-27. doi: 10.1016/j.talanta.2015.02.015
|
[28] |
HUNG H F, WANG C S. Experimental determination of reactive oxygen species in Taipei aerosols [J]. Journal of Aerosol Science, 2001, 32(10): 1201-1211. doi: 10.1016/S0021-8502(01)00051-9
|
[29] |
LIN V S, GRANDBOIS M, MCNEILL K. Fluorescent molecular probes for detection of one-electron oxidants photochemically generated by dissolved organic matter [J]. Environmental Science & Technology, 2017, 51(16): 9033-9041.
|
[30] |
MURPHY K R, STEDMON C A, GRAEBER D, et al. Fluorescence spectroscopy and multi-way techniques. PARAFAC [J]. Analytical Methods, 2013, 5(23): 6557. doi: 10.1039/c3ay41160e
|
[31] |
LIU Q Y, BAUMGARTNER J, ZHANG Y X, et al. Oxidative potential and inflammatory impacts of source apportioned ambient air pollution in Beijing [J]. Environmental Science & Technology, 2014, 48(21): 12920-12929.
|
[32] |
PATEL A, RASTOGI N. Oxidative potential of ambient fine aerosol over a semi-urban site in the Indo-Gangetic Plain [J]. Atmospheric Environment, 2018, 175: 127-134. doi: 10.1016/j.atmosenv.2017.12.004
|
[33] |
KHACHATRYAN L, VEJERANO E, LOMNICKI S, et al. Environmentally persistent free radicals (EPFRs). 1. Generation of reactive oxygen species in aqueous solutions [J]. Environmental Science & Technology, 2011, 45(19): 8559-8566.
|
[34] |
LIANG P, ZHANG C, DUAN X, et al. N-doped graphene from metal-organic frameworks for catalytic oxidation of p-hydroxylbenzoic acid: N-functionality and mechanism [J]. ACS Sustainable Chemistry & Engineering, 2017, 5(3): 2693-2701.
|
[35] |
ARANGIO A M, TONG H J, SOCORRO J, et al. Quantification of environmentally persistent free radicals and reactive oxygen species in atmospheric aerosol particles [J]. Atmospheric Chemistry and Physics, 2016, 16(20): 13105-13119. doi: 10.5194/acp-16-13105-2016
|
[36] |
GALI N K, STEVANOVIC S, BRIMBLECOMBE P, et al. The diurnal characteristics of PM-bound ROS and its influencing factors at urban ambient and roadside environments [J]. Atmospheric Research, 2020, 244: 105039. doi: 10.1016/j.atmosres.2020.105039
|
[37] |
FULLER S J, WRAGG F P H, NUTTER J, et al. Comparison of on-line and off-line methods to quantify reactive oxygen species (ROS) in atmospheric aerosols [J]. Atmospheric Environment, 2014, 92: 97-103. doi: 10.1016/j.atmosenv.2014.04.006
|
[38] |
KING L E, WEBER R J. Development and testing of an online method to measure ambient fine particulate reactive oxygen species (ROS) based on the 2', 7'-dichlorofluorescin (DCFH) assay [J]. Atmospheric Measurement Techniques, 2013, 6(7): 1647-1658. doi: 10.5194/amt-6-1647-2013
|
[39] |
WANG Y G, HOPKE P K, SUN L P, et al. Laboratory and field testing of an automated atmospheric particle-bound reactive oxygen species sampling-analysis system [J]. Journal of Toxicology, 2011, 2011: 419476.
|
[40] |
HUANG W, ZHANG Y X, ZHANG Y, et al. Development of an automated sampling-analysis system for simultaneous measurement of reactive oxygen species (ROS) in gas and particle phases: GAC-ROS [J]. Atmospheric Environment, 2016, 134: 18-26. doi: 10.1016/j.atmosenv.2016.03.038
|
[41] |
JANSSEN N A H, YANG A, STRAK M, et al. Oxidative potential of particulate matter collected at sites with different source characteristics [J]. Science of the Total Environment, 2014, 472: 572-581. doi: 10.1016/j.scitotenv.2013.11.099
|
[42] |
PIETROGRANDE M C, DALPIAZ C, DELL'ANNA R, et al. Chemical composition and oxidative potential of atmospheric coarse particles at an industrial and urban background site in the alpine region of northern Italy [J]. Atmospheric Environment, 2018, 191: 340-350. doi: 10.1016/j.atmosenv.2018.08.022
|
[43] |
SAMAKE A, UZU G, MARTINS J M F, et al. The unexpected role of bioaerosols in the Oxidative Potential of PM [J]. Scientific Reports, 2017, 7(1): 1-10. doi: 10.1038/s41598-016-0028-x
|
[44] |
JIN L, XIE J W, WONG C K C, et al. Contributions of city-specific fine particulate matter (PM2.5) to differential in vitro oxidative stress and toxicity implications between Beijing and Guangzhou of China [J]. Environmental Science & Technology, 2019, 53(5): 2881-2891.
|
[45] |
CHIRIZZI D, CESARI D, GUASCITO M R, et al. Influence of Saharan dust outbreaks and carbon content on oxidative potential of water-soluble fractions of PM2.5 and PM10 [J]. Atmospheric Environment, 2017, 163: 1-8. doi: 10.1016/j.atmosenv.2017.05.021
|
[46] |
VENKATACHARI P, HOPKE P K, BRUNE W H, et al. Characterization of wintertime reactive oxygen species concentrations in Flushing, New York [J]. Aerosol Science and Technology, 2007, 41(2): 97-111. doi: 10.1080/02786820601116004
|
[47] |
LIN P, YU J Z. Generation of reactive oxygen species mediated by humic-like substances in atmospheric aerosols [J]. Environmental Science & Technology, 2011, 45(24): 10362-10368.
|
[48] |
VERMA V, FANG T, XU L, et al. Organic aerosols associated with the generation of reactive oxygen species (ROS) by water-soluble PM2.5 [J]. Environmental Science & Technology, 2015, 49(7): 4646-4656.
|
[49] |
VERMA V, RICO-MARTINEZ R, KOTRA N, et al. Contribution of water-soluble and insoluble components and their hydrophobic/hydrophilic subfractions to the reactive oxygen species-generating potential of fine ambient aerosols [J]. Environmental Science & Technology, 2012, 46(20): 11384-11392.
|
[50] |
CHEUNG K L, NTZIACHRISTOS L, TZAMKIOZIS T, et al. Emissions of particulate trace elements, metals and organic species from gasoline, diesel, and biodiesel passenger vehicles and their relation to oxidative potential [J]. Aerosol Science and Technology, 2010, 44(7): 500-513. doi: 10.1080/02786821003758294
|
[51] |
SEE S W, WANG Y H, BALASUBRAMANIAN R. Contrasting reactive oxygen species and transition metal concentrations in combustion aerosols [J]. Environmental Research, 2007, 103(3): 317-324. doi: 10.1016/j.envres.2006.08.012
|
[52] |
VERMA V, NING Z, CHO A K, et al. Redox activity of urban quasi-ultrafine particles from primary and secondary sources [J]. Atmospheric Environment, 2009, 43(40): 6360-6368. doi: 10.1016/j.atmosenv.2009.09.019
|
[53] |
YU H R, WEI J L, CHENG Y L, et al. Synergistic and antagonistic interactions among the particulate matter components in generating reactive oxygen species based on the dithiothreitol assay [J]. Environmental Science & Technology, 2018, 52(4): 2261-2270.
|
[54] |
XIONG Q S, YU H R, WANG R R, et al. Rethinking dithiothreitol-based particulate matter oxidative potential: Measuring dithiothreitol consumption versus reactive oxygen species generation [J]. Environmental Science & Technology, 2017, 51(11): 6507-6514.
|
[55] |
LYU Y, GUO H B, CHENG T T, et al. Particle size distributions of oxidative potential of lung-deposited particles: Assessing contributions from quinones and water-soluble metals [J]. Environmental Science & Technology, 2018, 52(11): 6592-6600.
|
[56] |
KHACHATRYAN L, DELLINGER B. Environmentally persistent free radicals (EPFRs)-2. are free hydroxyl radicals generated in aqueous solutions? [J]. Environmental Science & Technology, 2011, 45(21): 9232-9239.
|
[57] |
DELLINGER B, LOMNICKI S, KHACHATRYAN L, et al. Formation and stabilization of persistent free radicals [J]. Proceedings of the Combustion Institute, 2007, 31(1): 521-528. doi: 10.1016/j.proci.2006.07.172
|
[58] |
CHEN Q C, WANG M M, WANG Y Q, et al. Rapid determination of environmentally persistent free radicals (EPFRs) in atmospheric particles with a quartz sheet-based approach using electron paramagnetic resonance (EPR) spectroscopy [J]. Atmospheric Environment, 2018, 184: 140-145. doi: 10.1016/j.atmosenv.2018.04.046
|
[59] |
YANG L L, LIU G R, ZHENG M H, et al. Highly elevated levels and particle-size distributions of environmentally persistent free radicals in haze-associated atmosphere [J]. Environmental Science & Technology, 2017, 51(14): 7936-7944.
|
[60] |
WANG P, PAN B, LI H, et al. The overlooked occurrence of environmentally persistent free radicals in an area with low-rank coal burning, Xuanwei, China [J]. Environmental Science & Technology, 2018, 52(3): 1054-1061.
|
[61] |
SHALTOUT A A, BOMAN J, SHEHADEH Z F, et al. Spectroscopic investigation of PM2.5 collected at industrial, residential and traffic sites in Taif, Saudi Arabia [J]. Journal of Aerosol Science, 2015, 79: 97-108. doi: 10.1016/j.jaerosci.2014.09.004
|
[62] |
DELA CRUZ A L N, COOK R L, LOMNICKI S M, et al. Effect of low temperature thermal treatment on soils contaminated with pentachlorophenol and environmentally persistent free radicals [J]. Environmental Science & Technology, 2012, 46(11): 5971-5978.
|
[63] |
OYANA T J, LOMNICKI S M, GUO C Q, et al. A scalable field study protocol and rationale for passive ambient air sampling: A spatial phytosampling for leaf data collection [J]. Environmental Science & Technology, 2017, 51(18): 10663-10673.
|
[64] |
LIAO S H, PAN B, LI H, et al. Detecting free radicals in biochars and determining their ability to inhibit the germination and growth of corn, wheat and rice seedlings [J]. Environmental Science & Technology, 2014, 48(15): 8581-8587.
|
[65] |
CHEN Q C, WANG M M, SUN H Y, et al. Enhanced health risks from exposure to environmentally persistent free radicals and the oxidative stress of PM2.5 from Asian dust storms in Erenhot, Zhangbei and Jinan, China [J]. Environment International, 2018, 121: 260-268. doi: 10.1016/j.envint.2018.09.012
|
[66] |
MARTIN-NETO L, ROSELL R, SPOSITO G. Correlation of spectroscopic indicators of humification with mean annual rainfall along a temperate grassland climosequence [J]. Geoderma, 1998, 81(3/4): 305-311.
|
[67] |
ALDERMAN S L, FARQUAR G R, POLIAKOFF E D, et al. An infrared and X-ray spectroscopic study of the reactions of 2-chlorophenol, 1, 2-dichlorobenzene, and chlorobenzene with model CuO/silica fly ash surfaces [J]. Environmental Science & Technology, 2005, 39(19): 7396-7401.
|
[68] |
HU S, POLIDORI A, ARHAMI M, et al. Redox activity and chemical speciation of size fractioned PM in the communities of the Los Angeles-Long Beach harbor [J]. Atmospheric Chemistry and Physics, 2008, 8(21): 6439-6451. doi: 10.5194/acp-8-6439-2008
|
[69] |
VERMA V, POLIDORI A, SCHAUER J J, et al. Physicochemical and toxicological profiles of particulate matter in los angeles during the October 2007 southern California wildfires [J]. Environmental Science & Technology, 2009, 43(3): 954-960.
|
[70] |
ALAM M S, DELGADO-SABORIT J M, STARK C, et al. Using atmospheric measurements of PAH and quinone compounds at roadside and urban background sites to assess sources and reactivity [J]. Atmospheric Environment, 2013, 77: 24-35. doi: 10.1016/j.atmosenv.2013.04.068
|
[71] |
LIU W J, XU Y S, LIU W X, et al. Oxidative potential of ambient PM2.5 in the coastal cities of the Bohai Sea, Northern China: Seasonal variation and source apportionment [J]. Environmental Pollution, 2018, 236: 514-528. doi: 10.1016/j.envpol.2018.01.116
|
[72] |
MA Y Q, CHENG Y B, QIU X H, et al. Sources and oxidative potential of water-soluble humic-like substances (HULISWS) in fine particulate matter (PM2.5) in Beijing [J]. Atmospheric Chemistry and Physics, 2018, 18(8): 5607-5617. doi: 10.5194/acp-18-5607-2018
|
[73] |
WANG J P, LIN X, LU L P, et al. Temporal variation of oxidative potential of water soluble components of ambient PM2.5 measured by dithiothreitol (DTT) assay [J]. Science of the Total Environment, 2019, 649: 969-978. doi: 10.1016/j.scitotenv.2018.08.375
|
[74] |
YU S Y, LIU W J, XU Y S, et al. Characteristics and oxidative potential of atmospheric PM2.5 in Beijing: Source apportionment and seasonal variation [J]. Science of the Total Environment, 2019, 650: 277-287. doi: 10.1016/j.scitotenv.2018.09.021
|
[75] |
BREHMER C, LAI A, CLARK S, et al. The oxidative potential of personal and household PM2.5 in a rural setting in southwestern China [J]. Environmental Science & Technology, 2019, 53(5): 2788-2798.
|
[76] |
WANG Y Q, WANG M M, LI S P, et al. Study on the oxidation potential of the water-soluble components of ambient PM2.5 over Xi’an, China: Pollution levels, source apportionment and transport pathways [J]. Environment International, 2020, 136: 105515. doi: 10.1016/j.envint.2020.105515
|
[77] |
VERMA V, FANG T, GUO H, et al. Reactive oxygen species associated with water-soluble PM2.5 in the southeastern United States: Spatiotemporal trends and source apportionment [J]. Atmospheric Chemistry and Physics, 2014, 14(23): 12915-12930. doi: 10.5194/acp-14-12915-2014
|
[78] |
BATES J T, WEBER R J, ABRAMS J, et al. Reactive oxygen species generation linked to sources of atmospheric particulate matter and cardiorespiratory effects [J]. Environmental Science & Technology, 2015, 49(22): 13605-13612.
|
[79] |
WEBER S, UZU G, CALAS A, et al. An apportionment method for the oxidative potential of atmospheric particulate matter sources: Application to a one-year study in Chamonix, France [J]. Atmospheric Chemistry and Physics, 2018, 18(13): 9617-9629. doi: 10.5194/acp-18-9617-2018
|