[1] |
STAMS A J M, SOUSA D Z, KLEEREBEZEM R, et al. Role of syntrophic microbial communities in high-rate methanogenic bioreactors [J]. Water Science and Technology, 2012, 66(2): 352-362. doi: 10.2166/wst.2012.192
|
[2] |
DEMIREL B, SCHERER P. The roles of acetotrophic and hydrogenotrophic methanogens during anaerobic conversion of biomass to methane: A review [J]. Reviews in Environmental Science and Bio/Technology, 2008, 7(2): 173-190. doi: 10.1007/s11157-008-9131-1
|
[3] |
MUYZER G, STAMS A J M. The ecology and biotechnology of sulphate-reducing bacteria [J]. Nature Reviews Microbiology, 2008, 6(6): 441-454. doi: 10.1038/nrmicro1892
|
[4] |
SELA-ADLER M, RONEN Z, HERUT B, et al. Co-existence of methanogenesis and sulfate reduction with common substrates in sulfate-rich estuarine sediments [J]. Frontiers in Microbiology, 2017, 8: 766. doi: 10.3389/fmicb.2017.00766
|
[5] |
ABBAS Y, YUN S N, WANG Z Q, et al. Recent advances in bio-based carbon materials for anaerobic digestion: A review [J]. Renewable and Sustainable Energy Reviews, 2021, 135: 110378. doi: 10.1016/j.rser.2020.110378
|
[6] |
GAHLOT P, AHMED B, TIWARI S B, et al. Conductive material engineered direct interspecies electron transfer (DIET) in anaerobic digestion: Mechanism and application [J]. Environmental Technology & Innovation, 2020, 20: 101056.
|
[7] |
CRUZ VIGGI C, ROSSETTI S, FAZI S, et al. Magnetite particles triggering a faster and more robust syntrophic pathway of methanogenic propionate degradation [J]. Environmental Science & Technology, 2014, 48(13): 7536-7543.
|
[8] |
CAPSON-TOJO G, MOSCOVIZ R, RUIZ D, et al. Addition of granular activated carbon and trace elements to favor volatile fatty acid consumption during anaerobic digestion of food waste [J]. Bioresource Technology, 2018, 260: 157-168. doi: 10.1016/j.biortech.2018.03.097
|
[9] |
LÜ F, LIU Y, SHAO L M, et al. Powdered biochar doubled microbial growth in anaerobic digestion of oil [J]. Applied Energy, 2019, 247: 605-614. doi: 10.1016/j.apenergy.2019.04.052
|
[10] |
ZHAO Z Q, ZHANG Y B, WOODARD T L, et al. Enhancing syntrophic metabolism in up-flow anaerobic sludge blanket reactors with conductive carbon materials [J]. Bioresource Technology, 2015, 191: 140-145. doi: 10.1016/j.biortech.2015.05.007
|
[11] |
CRUZ VIGGI C, CASALE S, CHOUCHANE H, et al. Magnetite nanoparticles enhance the bioelectrochemical treatment of municipal sewage by facilitating the syntrophic oxidation of volatile fatty acids [J]. Journal of Chemical Technology & Biotechnology, 2019, 94(10): 3134-3146.
|
[12] |
SCHMIDT J E, AHRING B K. Effects of hydrogen and formate on the degradation of propionate and butyrate in thermophilic granules from an upflow anaerobic sludge blanket reactor [J]. Applied Environmental Microbiology, 1993, 59(8): 2546-2551. doi: 10.1128/aem.59.8.2546-2551.1993
|
[13] |
BOONE D R, JOHNSON R L, LIU Y T. Diffusion of the interspecies electron carriers H2 and formate in methanogenic ecosystems and its implications in the measurement of Km for H2 or formate uptake [J]. Applied and Environmental Microbiology, 1989, 55(7): 1735-1741. doi: 10.1128/aem.55.7.1735-1741.1989
|
[14] |
MORITA M, MALVANKAR N S, FRANKS A E, et al. Potential for direct interspecies electron transfer in methanogenic wastewater digester aggregates [J]. mBio, 2011, 2(4): e00159-e00111.
|
[15] |
WU Y, WANG S, LIANG D H, et al. Conductive materials in anaerobic digestion: From mechanism to application [J]. Bioresource Technology, 2020, 298: 122403. doi: 10.1016/j.biortech.2019.122403
|
[16] |
LUO C H, LÜ F, SHAO L M, et al. Application of eco-compatible biochar in anaerobic digestion to relieve acid stress and promote the selective colonization of functional microbes [J]. Water Research, 2015, 68: 710-718. doi: 10.1016/j.watres.2014.10.052
|
[17] |
JANG H M, CHOI Y K, KAN E. Effects of dairy manure-derived biochar on psychrophilic, mesophilic and thermophilic anaerobic digestions of dairy manure [J]. Bioresource Technology, 2018, 250: 927-931. doi: 10.1016/j.biortech.2017.11.074
|
[18] |
WANG G J, LI Q, GAO X, et al. Synergetic promotion of syntrophic methane production from anaerobic digestion of complex organic wastes by biochar: Performance and associated mechanisms [J]. Bioresource Technology, 2018, 250: 812-820. doi: 10.1016/j.biortech.2017.12.004
|
[19] |
INDREN M, BIRZER C H, KIDD S P, et al. Effects of biochar parent material and microbial pre-loading in biochar-amended high-solids anaerobic digestion [J]. Bioresource Technology, 2020, 298: 122457. doi: 10.1016/j.biortech.2019.122457
|
[20] |
SHEN Y W, YU Y M, ZHANG Y, et al. Role of redox-active biochar with distinctive electrochemical properties to promote methane production in anaerobic digestion of waste activated sludge [J]. Journal of Cleaner Production, 2021, 278: 123212. doi: 10.1016/j.jclepro.2020.123212
|
[21] |
WANG Z Q, YUN S N, XU H F, et al. Mesophilic anaerobic co-digestion of acorn slag waste with dairy manure in a batch digester: Focusing on mixing ratios and bio-based carbon accelerants [J]. Bioresource Technology, 2019, 286: 121394. doi: 10.1016/j.biortech.2019.121394
|
[22] |
LEI Y Q, SUN D Z, DANG Y, et al. Stimulation of methanogenesis in anaerobic digesters treating leachate from a municipal solid waste incineration plant with carbon cloth [J]. Bioresource Technology, 2016, 222: 270-276. doi: 10.1016/j.biortech.2016.10.007
|
[23] |
ZHAO Z Q, ZHANG Y B, LI Y, et al. Potentially shifting from interspecies hydrogen transfer to direct interspecies electron transfer for syntrophic metabolism to resist acidic impact with conductive carbon cloth [J]. Chemical Engineering Journal, 2017, 313: 10-18. doi: 10.1016/j.cej.2016.11.149
|
[24] |
ZHAO Z Q, LI Y, QUAN X, et al. Towards engineering application: Potential mechanism for enhancing anaerobic digestion of complex organic waste with different types of conductive materials [J]. Water Research, 2017, 115: 266-277. doi: 10.1016/j.watres.2017.02.067
|
[25] |
ZHAO Z Q, ZHANG Y B, YU Q L, et al. Communities stimulated with ethanol to perform direct interspecies electron transfer for syntrophic metabolism of propionate and butyrate [J]. Water Research, 2016, 102: 475-484. doi: 10.1016/j.watres.2016.07.005
|
[26] |
LEE J Y, LEE S H, PARK H D. Enrichment of specific electro-active microorganisms and enhancement of methane production by adding granular activated carbon in anaerobic reactors [J]. Bioresource Technology, 2016, 205: 205-212. doi: 10.1016/j.biortech.2016.01.054
|
[27] |
YANG Y F, ZHANG Y B, LI Z Y, et al. Adding granular activated carbon into anaerobic sludge digestion to promote methane production and sludge decomposition [J]. Journal of Cleaner Production, 2017, 149: 1101-1108. doi: 10.1016/j.jclepro.2017.02.156
|
[28] |
PENG H, ZHANG Y B, TAN D M, et al. Roles of magnetite and granular activated carbon in improvement of anaerobic sludge digestion [J]. Bioresource Technology, 2018, 249: 666-672. doi: 10.1016/j.biortech.2017.10.047
|
[29] |
TIAN T, QIAO S, LI X, et al. Nano-graphene induced positive effects on methanogenesis in anaerobic digestion [J]. Bioresource Technology, 2017, 224: 41-47. doi: 10.1016/j.biortech.2016.10.058
|
[30] |
WU B T, LIN R C, KANG X H, et al. Graphene addition to digestion of thin stillage can alleviate acidic shock and improve biomethane production [J]. ACS Sustainable Chemistry & Engineering, 2020, 8(35): 13248-13260.
|
[31] |
LIN R C, CHENG J, ZHANG J B, et al. Boosting biomethane yield and production rate with graphene: The potential of direct interspecies electron transfer in anaerobic digestion [J]. Bioresource Technology, 2017, 239: 345-352. doi: 10.1016/j.biortech.2017.05.017
|
[32] |
ZHANG L, ZHANG J X, LOH K C. Activated carbon enhanced anaerobic digestion of food waste - Laboratory-scale and Pilot-scale operation [J]. Waste Management, 2018, 75: 270-279. doi: 10.1016/j.wasman.2018.02.020
|
[33] |
LI L L, TONG Z H, FANG C Y, et al. Response of anaerobic granular sludge to single-wall carbon nanotube exposure [J]. Water Research, 2015, 70: 1-8. doi: 10.1016/j.watres.2014.11.042
|
[34] |
ZHANG M Y, MA Y Q, JI D D, et al. Synergetic promotion of direct interspecies electron transfer for syntrophic metabolism of propionate and butyrate with graphite felt in anaerobic digestion [J]. Bioresource Technology, 2019, 287: 121373. doi: 10.1016/j.biortech.2019.121373
|
[35] |
HU Q, SUN D Z, MA Y, et al. Conductive polyaniline nanorods enhanced methane production from anaerobic wastewater treatment [J]. Polymer, 2017, 120: 236-243. doi: 10.1016/j.polymer.2017.05.073
|
[36] |
WANG Z Q, YUN S N, SHI J, et al. Critical evidence for direct interspecies electron transfer with tungsten-based accelerants: An experimental and theoretical investigation [J]. Bioresource Technology, 2020, 311: 123519. doi: 10.1016/j.biortech.2020.123519
|
[37] |
WANG C, YUN S N, XU H F, et al. Dual functional application of pomelo peel-derived bio-based carbon with controllable morphologies: An efficient catalyst for triiodide reduction and accelerant for anaerobic digestion [J]. Ceramics International, 2020, 46(3): 3292-3303. doi: 10.1016/j.ceramint.2019.10.035
|
[38] |
LÜ C X, SHEN Y W, LI C, et al. Redox-active biochar and conductive graphite stimulate methanogenic metabolism in anaerobic digestion of waste-activated sludge: Beyond direct interspecies electron transfer [J]. ACS Sustainable Chemistry & Engineering, 2020, 8(33): 12626-12636.
|
[39] |
SHANMUGAM S R, ADHIKARI S, NAM H, et al. Effect of bio-char on methane generation from glucose and aqueous phase of algae liquefaction using mixed anaerobic cultures [J]. Biomass and Bioenergy, 2018, 108: 479-486. doi: 10.1016/j.biombioe.2017.10.034
|
[40] |
CHEN S S, ROTARU A E, LIU F H, et al. Carbon cloth stimulates direct interspecies electron transfer in syntrophic co-cultures [J]. Bioresource Technology, 2014, 173: 82-86. doi: 10.1016/j.biortech.2014.09.009
|
[41] |
BAEK G, KIM J, LEE C. A review of the effects of iron compounds on methanogenesis in anaerobic environments [J]. Renewable and Sustainable Energy Reviews, 2019, 113: 109282. doi: 10.1016/j.rser.2019.109282
|
[42] |
STRAUB K L, BENZ M, SCHINK B. Iron metabolism in anoxic environments at near neutral pH [J]. FEMS Microbiology Ecology, 2001, 34(3): 181-186. doi: 10.1111/j.1574-6941.2001.tb00768.x
|
[43] |
林霄涵, 杨帆, 赵峰. 微生物的胞外电子传递界面 [J]. 环境化学, 2021, 40(11): 3283-3296. doi: 10.7524/j.issn.0254-6108.2021033106
LIN X H, YANG F, ZHAO F. The interface of microbial extracellular electron transfer [J]. Environmental Chemistry, 2021, 40(11): 3283-3296(in Chinese). doi: 10.7524/j.issn.0254-6108.2021033106
|
[44] |
SUMMERS Z M, FOGARTY H E, LEANG C, et al. Direct exchange of electrons within aggregates of an evolved syntrophic coculture of anaerobic bacteria [J]. Science, 2010, 330(6009): 1413-1415. doi: 10.1126/science.1196526
|
[45] |
KATO S, HASHIMOTO K, WATANABE K. Microbial interspecies electron transfer via electric currents through conductive minerals [J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(25): 10042-10046. doi: 10.1073/pnas.1117592109
|
[46] |
KATO S, HASHIMOTO K, WATANABE K. Methanogenesis facilitated by electric syntrophy via (semi)conductive iron-oxide minerals [J]. Environmental Microbiology, 2012, 14(7): 1646-1654. doi: 10.1111/j.1462-2920.2011.02611.x
|
[47] |
AULENTA F, FAZI S, MAJONE M, et al. Electrically conductive magnetite particles enhance the kinetics and steer the composition of anaerobic TCE-dechlorinating cultures [J]. Process Biochemistry, 2014, 49(12): 2235-2240. doi: 10.1016/j.procbio.2014.09.015
|
[48] |
WANG T, ZHANG D, DAI L L, et al. Magnetite triggering enhanced direct interspecies electron transfer: A scavenger for the blockage of electron transfer in anaerobic digestion of high-solids sewage sludge [J]. Environmental Science & Technology, 2018, 52(12): 7160-7169.
|
[49] |
XIA X X, ZHANG J C, SONG T Z, et al. Stimulation of Smithella-dominating propionate oxidation in a sediment enrichment by magnetite and carbon nanotubes [J]. Environmental Microbiology Reports, 2019, 11(2): 236-248. doi: 10.1111/1758-2229.12737
|
[50] |
LEE J, KOO T, YULISA A, et al. Magnetite as an enhancer in methanogenic degradation of volatile fatty acids under ammonia-stressed condition [J]. Journal of Environmental Management, 2019, 241: 418-426.
|
[51] |
ZHANG J Y, WANG Z Y, LU T D, et al. Response and mechanisms of the performance and fate of antibiotic resistance genes to nano-magnetite during anaerobic digestion of swine manure [J]. Journal of Hazardous Materials, 2019, 366: 192-201. doi: 10.1016/j.jhazmat.2018.11.106
|
[52] |
HUANG J J, MA K, XIA X X, et al. Biochar and magnetite promote methanogenesis during anaerobic decomposition of rice straw [J]. Soil Biology and Biochemistry, 2020, 143: 107740. doi: 10.1016/j.soilbio.2020.107740
|
[53] |
MOSTAFA A, IM S, SONG Y C, et al. Enhanced anaerobic digestion of long chain fatty acid by adding magnetite and carbon nanotubes [J]. Microorganisms, 2020, 8(3): 333. doi: 10.3390/microorganisms8030333
|
[54] |
MA W C, LI J X, ZHONG D, et al. New insights into enhanced anaerobic degradation of coal gasification wastewater (CGW) with the assistance of magnetite nanoparticles [J]. Chemosphere, 2021, 262: 127872. doi: 10.1016/j.chemosphere.2020.127872
|
[55] |
BAEK G, JUNG H, KIM J, et al. A long-term study on the effect of magnetite supplementation in continuous anaerobic digestion of dairy effluent - Magnetic separation and recycling of magnetite [J]. Bioresource Technology, 2017, 241: 830-840. doi: 10.1016/j.biortech.2017.06.018
|
[56] |
JING Y H, WAN J J, ANGELIDAKI I, et al. iTRAQ quantitative proteomic analysis reveals the pathways for methanation of propionate facilitated by magnetite [J]. Water Research, 2017, 108: 212-221. doi: 10.1016/j.watres.2016.10.077
|
[57] |
YIN Q D, MIAO J, LI B, et al. Enhancing electron transfer by ferroferric oxide during the anaerobic treatment of synthetic wastewater with mixed organic carbon [J]. International Biodeterioration & Biodegradation, 2017, 119: 104-110.
|
[58] |
YIN Q D, YANG S, WANG Z Z, et al. Clarifying electron transfer and metagenomic analysis of microbial community in the methane production process with the addition of ferroferric oxide [J]. Chemical Engineering Journal, 2018, 333: 216-225. doi: 10.1016/j.cej.2017.09.160
|
[59] |
ZHAO Z S, LI Y, YU Q L, et al. Ferroferric oxide triggered possible direct interspecies electron transfer between Syntrophomonas and Methanosaeta to enhance waste activated sludge anaerobic digestion [J]. Bioresource Technology, 2018, 250: 79-85. doi: 10.1016/j.biortech.2017.11.003
|
[60] |
ZHANG J Y, LU T D, WANG Z Y, et al. Effects of magnetite on anaerobic digestion of swine manure: Attention to methane production and fate of antibiotic resistance genes [J]. Bioresource Technology, 2019, 291: 121847. doi: 10.1016/j.biortech.2019.121847
|
[61] |
JIN Z, ZHAO Z Q, ZHANG Y B. Potential of direct interspecies electron transfer in synergetic enhancement of methanogenesis and sulfate removal in an up-flow anaerobic sludge blanket reactor with magnetite [J]. Science of the Total Environment, 2019, 677: 299-306. doi: 10.1016/j.scitotenv.2019.04.372
|
[62] |
WANG C Q, WANG C, JIN L N, et al. Response of syntrophic aggregates to the magnetite loss in continuous anaerobic bioreactor [J]. Water Research, 2019, 164: 114925. doi: 10.1016/j.watres.2019.114925
|
[63] |
MA K L, WANG W, LIU Y Q, et al. Insight into the performance and microbial community profiles of magnetite-amended anaerobic digestion: Varying promotion effects at increased loads [J]. Bioresource Technology, 2021, 329: 124928. doi: 10.1016/j.biortech.2021.124928
|
[64] |
KIM J, CHOI H, LEE C. Formation and characterization of conductive magnetite-embedded granules in upflow anaerobic sludge blanket reactor treating dairy wastewater [J]. Bioresource Technology, 2022, 345: 126492. doi: 10.1016/j.biortech.2021.126492
|
[65] |
ZHENG S C, YANG F, HUANG W L, et al. Combined effect of zero valent iron and magnetite on semi-dry anaerobic digestion of swine manure [J]. Bioresource Technology, 2022, 346: 126438. doi: 10.1016/j.biortech.2021.126438
|
[66] |
BAEK G, KIM J, LEE C. Effectiveness of electromagnetic in situ magnetite capture in anaerobic sequencing batch treatment of dairy effluent under electro-syntrophic conditions [J]. Renewable Energy, 2021, 179: 105-115. doi: 10.1016/j.renene.2021.07.052
|
[67] |
ZHU R L, HE L Y, LI Q Y, et al. Mechanism study of improving anaerobic co-digestion performance of waste activated sludge and food waste by Fe3O4 [J]. Journal of Environmental Management, 2021, 300: 113745. doi: 10.1016/j.jenvman.2021.113745
|
[68] |
JUNG H, BAEK G, LEE C. Magnetite-assisted in situ microbial oxidation of H2S to S0 during anaerobic digestion: A new potential for sulfide control [J]. Chemical Engineering Journal, 2020, 397: 124982. doi: 10.1016/j.cej.2020.124982
|
[69] |
LI P F, WANG Q, HE X M, et al. Investigation on the effect of different additives on anaerobic co-digestion of corn straw and sewage sludge: Comparison of biochar, Fe3O4, and magnetic biochar [J]. Bioresource Technology, 2022, 345: 126532. doi: 10.1016/j.biortech.2021.126532
|
[70] |
WANG C Q, LIU Y, JIN S, et al. Responsiveness extracellular electron transfer (EET) enhancement of anaerobic digestion system during start-up and starvation recovery stages via magnetite addition [J]. Bioresource Technology, 2019, 272: 162-170. doi: 10.1016/j.biortech.2018.10.013
|
[71] |
XING L Z, WANG Z F, GU M Q, et al. Coupled effects of ferroferric oxide supplement and ethanol co-metabolism on the methanogenic oxidation of propionate [J]. Science of the Total Environment, 2020, 723: 137992. doi: 10.1016/j.scitotenv.2020.137992
|
[72] |
AMBUCHI J J, ZHANG Z H, SHAN L L, et al. Response of anaerobic granular sludge to iron oxide nanoparticles and multi-wall carbon nanotubes during beet sugar industrial wastewater treatment [J]. Water Research, 2017, 117: 87-94. doi: 10.1016/j.watres.2017.03.050
|
[73] |
ZHU R L, CHEN Y D, ZHAO T, et al. Enhanced mesophilic anaerobic co-digestion of waste sludge and food waste by using hematite (α-Fe2O3) supported bentonite as additive [J]. Bioresource Technology, 2020, 313: 123603. doi: 10.1016/j.biortech.2020.123603
|
[74] |
YE J, HU A D, REN G P, et al. Enhancing sludge methanogenesis with improved redox activity of extracellular polymeric substances by hematite in red mud [J]. Water Research, 2018, 134: 54-62. doi: 10.1016/j.watres.2018.01.062
|
[75] |
ZHUANG L, TANG Z Y, MA J L, et al. Enhanced anaerobic biodegradation of benzoate under sulfate-reducing conditions with conductive iron-oxides in sediment of Pearl River Estuary [J]. Frontiers in Microbiology, 2019, 10: 374. doi: 10.3389/fmicb.2019.00374
|
[76] |
TANG Y P, LI Y, ZHANG M Q, et al. Link between characteristics of Fe(III) oxides and critical role in enhancing anaerobic methanogenic degradation of complex organic compounds [J]. Environmental Research, 2021, 194: 110498. doi: 10.1016/j.envres.2020.110498
|
[77] |
XU S Y, ZHANG W Q, ZUO L Q, et al. Comparative facilitation of activated carbon and goethite on methanogenesis from volatile fatty acids [J]. Bioresource Technology, 2020, 302: 122801. doi: 10.1016/j.biortech.2020.122801
|
[78] |
BAEK G, KIM J, LEE C. A long-term study on the effect of magnetite supplementation in continuous anaerobic digestion of dairy effluent - Enhancement in process performance and stability [J]. Bioresource Technology, 2016, 222: 344-354. doi: 10.1016/j.biortech.2016.10.019
|
[79] |
LU T D, ZHANG J Y, WEI Y S, et al. Effects of ferric oxide on the microbial community and functioning during anaerobic digestion of swine manure [J]. Bioresource Technology, 2019, 287: 121393. doi: 10.1016/j.biortech.2019.121393
|
[80] |
THAUER R K, KASTER A K, SEEDORF H, et al. Methanogenic Archaea: Ecologically relevant differences in energy conservation [J]. Nature Reviews Microbiology, 2008, 6(8): 579-591. doi: 10.1038/nrmicro1931
|
[81] |
STAMS A J M, PLUGGE C M. Electron transfer in syntrophic communities of anaerobic bacteria and Archaea [J]. Nature Reviews Microbiology, 2009, 7(8): 568-577. doi: 10.1038/nrmicro2166
|
[82] |
ROTARU A E, SHRESTHA P M, LIU F H, et al. A new model for electron flow during anaerobic digestion: Direct interspecies electron transfer to Methanosaeta for the reduction of carbon dioxide to methane [J]. Energy & Environmental Science, 2014, 7(1): 408-415.
|
[83] |
赵智强, 李杨, 张耀斌. 厌氧消化中直接种间电子传递产甲烷机理研究与技术应用 [J]. 科学通报, 2020, 65(26): 2820-2834. doi: 10.1360/TB-2020-0661
ZHAO Z Q, LI Y, ZHANG Y B. Direct interspecies electron transfer in anaerobic digestion: Research and technological application [J]. Chinese Science Bulletin, 2020, 65(26): 2820-2834(in Chinese). doi: 10.1360/TB-2020-0661
|
[84] |
田晓春, 吴雪娥, 赵峰, 等. 电化学联用技术研究微生物的胞外电子传递机制 [J]. 化学进展, 2018, 30(8): 1222-1227.
TIAN X C, WU X E, ZHAO F, et al. Research on mechanisms of microbial extracellular electron transfer by electrochemical integrated technologies [J]. Progress in Chemistry, 2018, 30(8): 1222-1227(in Chinese).
|
[85] |
LIU F H, ROTARU A E, SHRESTHA P M, et al. Magnetite compensates for the lack of a pilin-associated c-type cytochrome in extracellular electron exchange [J]. Environmental Microbiology, 2015, 17(3): 648-655. doi: 10.1111/1462-2920.12485
|
[86] |
LOVLEY D R. Syntrophy Goes electric: Direct interspecies electron transfer [J]. Annual Review of Microbiology, 2017, 71: 643-664. doi: 10.1146/annurev-micro-030117-020420
|
[87] |
WANG M W, ZHAO Z Q, ZHANG Y B. Magnetite-contained biochar derived from Fenton sludge modulated electron transfer of microorganisms in anaerobic digestion [J]. Journal of Hazardous Materials, 2021, 403: 123972. doi: 10.1016/j.jhazmat.2020.123972
|
[88] |
KANG H J, LEE S H, LIM T G, et al. Recent advances in methanogenesis through direct interspecies electron transfer via conductive materials: A molecular microbiological perspective [J]. Bioresource Technology, 2021, 322: 124587. doi: 10.1016/j.biortech.2020.124587
|
[89] |
FLEMMING H C, WINGENDER J. The biofilm matrix [J]. Nature Reviews Microbiology, 2010, 8(9): 623-633. doi: 10.1038/nrmicro2415
|
[90] |
WANG H W, DENG H H, MA L M, et al. Influence of operating conditions on extracellular polymeric substances and surface properties of sludge flocs [J]. Carbohydrate Polymers, 2013, 92(1): 510-515. doi: 10.1016/j.carbpol.2012.09.055
|
[91] |
XIAO Y, ZHANG E H, ZHANG J D, et al. Extracellular polymeric substances are transient media for microbial extracellular electron transfer [J]. Science Advances, 2017, 3(7): e1700623. doi: 10.1126/sciadv.1700623
|
[92] |
YU Q, YANG Y F, WANG M W, et al. Enhancing anaerobic digestion of kitchen wastes via combining ethanol-type fermentation with magnetite: Potential for stimulating secretion of extracellular polymeric substances [J]. Waste Management, 2021, 127: 10-17. doi: 10.1016/j.wasman.2021.04.022
|
[93] |
WEBER K A, ACHENBACH L A, COATES J D. Microorganisms pumping iron: Anaerobic microbial iron oxidation and reduction [J]. Nature Reviews Microbiology, 2006, 4(10): 752-764. doi: 10.1038/nrmicro1490
|
[94] |
ACHTNICH C, BAK F, CONRAD R. Competition for electron donors among nitrate reducers, ferric iron reducers, sulfate reducers, and methanogens in anoxic paddy soil [J]. Biology and Fertility of Soils, 1995, 19(1): 65-72. doi: 10.1007/BF00336349
|
[95] |
LOVLEY D R, HOLMES D E, NEVIN K P. Dissimilatory Fe(III) and Mn(IV) reduction [J]. Advances in Microbial Physiology, 2004, 49: 219-286.
|
[96] |
VAN B P M, SCHOLTEN J C M, STAMS A J M. Direct inhibition of methanogenesis by ferric iron [J]. FEMS Microbiology Ecology, 2004, 49(2): 261-268. doi: 10.1016/j.femsec.2004.03.017
|
[97] |
ZHOU S G, XU J L, YANG G Q, et al. Methanogenesis affected by the co-occurrence of iron(III) oxides and humic substances [J]. FEMS Microbiology Ecology, 2014, 88(1): 107-120. doi: 10.1111/1574-6941.12274
|
[98] |
马金莲, 马晨, 汤佳, 等. 电子穿梭体介导的微生物胞外电子传递: 机制及应用 [J]. 化学进展, 2015, 27(12): 1833-1840. doi: 10.7536/PC150533
MA J L, MA C, TANG J, et al. Mechanisms and applications of electron shuttle-mediated extracellular electron transfer [J]. Progress in Chemistry, 2015, 27(12): 1833-1840(in Chinese). doi: 10.7536/PC150533
|
[99] |
LOVLEY D R, PHILLIPS E J. Organic matter mineralization with reduction of ferric iron in anaerobic sediments [J]. Applied and Environmental Microbiology, 1986, 51(4): 683-689. doi: 10.1128/aem.51.4.683-689.1986
|