[1] BUCK R C, FRANKLIN J, BERGER U, et al. Perfluoroalkyl and polyfluoroalkyl substances in the environment: Terminology, classification, and origins [J]. Integrated Environmental Assessment and Management, 2011, 7(4): 513-541. doi: 10.1002/ieam.258
[2] WANG Z Y, DEWITT J C, HIGGINS C P, et al. A never-ending story of per- and polyfluoroalkyl substances (PFASs)? [J]. Environmental Science & Technology, 2017, 51(5): 2508-2518.
[3] GOU Z S, LIU X Y, KREBS K, et al. Perfluorocarboxylic acid content on 116 articles of commerce [EB/OL]. [2014-5-21].https://www.researchgate.net/publication/237330513_ Perfluorocarboxy-lic_Acid_Content_in_116_Articles_of_Commerce.
[4] GLÜGE J, SCHERINGER M, COUSINS I T, et al. An overview of the uses of per- and polyfluoroalkyl substances (PFAS) [J]. Environmental Science. Processes & Impacts, 2020, 22(12): 2345-2373.
[5] WASHINGTON J W, ROSAL C G, MCCORD J P, et al. Nontargeted mass-spectral detection of chloroperfluoropolyether carboxylates in New Jersey soils [J]. Science, 2020, 368(6495): 1103-1107. doi: 10.1126/science.aba7127
[6] YEUNG L W Y, DASSUNCAO C, MABURY S, et al. Vertical profiles, sources, and transport of PFASs in the Arctic Ocean [J]. Environmental Science & Technology, 2017, 51(12): 6735-6744.
[7] 李飞, 曾庆玲, 沈春花, 等. 上海市市政污水中全氟有机酸污染特征 [J]. 中国环境科学, 2012, 32(9): 1602-1612. doi: 10.3969/j.issn.1000-6923.2012.09.010 LI F, ZENG Q L, SHEN C H, et al. Pollution profiles of perfluorinated acids in municipal sewage in Shanghai, China [J]. China Environmental Science, 2012, 32(9): 1602-1612(in Chinese). doi: 10.3969/j.issn.1000-6923.2012.09.010
[8] FAIR P A, WOLF B, WHITE N D, et al. Perfluoroalkyl substances (PFASs) in edible fish species from Charleston Harbor and tributaries, South Carolina, United States: Exposure and risk assessment [J]. Environmental Research, 2019, 171: 266-277. doi: 10.1016/j.envres.2019.01.021
[9] HOUDE M, de SILVA A O, MUIR D C, et al. Monitoring of perfluorinated compounds in aquatic biota: An updated review PFCs in aquatic biota [J]. Environmental Science & Technology, 2011, 45(19): 7962-7973.
[10] 崔文杰, 彭吉星, 谭志军, 等. 全氟烷基物质在胶州湾海水、沉积物及生物中污染特征 [J]. 环境科学, 2019, 40(9): 3990-3999. CUI W J, PENG J X, TAN Z J, et al. Pollution characteristics of perfluorinated alkyl substances(PFASs) in seawater, sediments, and biological samples from Jiaozhou Bay, China [J]. Environmental Science, 2019, 40(9): 3990-3999(in Chinese).
[11] HARRIS M H, RIFAS-SHIMAN S L, CALAFAT A M, et al. Predictors of per- and polyfluoroalkyl substance (PFAS) plasma concentrations in 6-10 year old American children [J]. Environmental Science & Technology, 2017, 51(9): 5193-5204.
[12] VESTERGREN R, COUSINS I T. Tracking the pathways of human exposure to perfluorocarboxylates [J]. Environmental Science & Technology, 2009, 43(15): 5565-5575.
[13] 高雪嫣, 王雨昕, 李敬光, 等. 天津市孕妇全氟有机化合物的暴露水平 [J]. 中国卫生工程学, 2019, 18(2): 166-170. GAO X Y, WANG Y X, LI J G, et al. Exposure of perfluoroalkyl substances in serum of pregnant women in Tianjin [J]. Chinese Journal of Public Health Engineering, 2019, 18(2): 166-170(in Chinese).
[14] 谢蕾, 章涛, 孙红文. 全氟烷基化合物在人体肝脏中的富集特征及其与肝损伤的关系 [J]. 环境化学, 2020, 39(6): 1479-1487. doi: 10.7524/j.issn.0254-6108.2019041103 XIE L, ZHANG T, SUN H W. Enrichment characteristics of perfluoroalkyl substances(PFASs) in human liver and its association with hepatocyte apoptosis [J]. Environmental Chemistry, 2020, 39(6): 1479-1487(in Chinese). doi: 10.7524/j.issn.0254-6108.2019041103
[15] DEWITT J C, PEDEN-ADAMS M M, KELLER J M, et al. Immunotoxicity of perfluorinated compounds: Recent developments [J]. Toxicologic Pathology, 2012, 40(2): 300-311. doi: 10.1177/0192623311428473
[16] OJO A F, PENG C, NG J C. Assessing the human health risks of per- and polyfluoroalkyl substances: A need for greater focus on their interactions as mixtures [J]. Journal of Hazardous Materials, 2021, 407: 124863. doi: 10.1016/j.jhazmat.2020.124863
[17] SUNDERLAND E M, HU X C, DASSUNCAO C, et al. A review of the pathways of human exposure to poly- and perfluoroalkyl substances (PFASs) and present understanding of health effects [J]. Journal of Exposure Science & Environmental Epidemiology, 2019, 29(2): 131-147.
[18] JOHNSON M S, BUCK R C, COUSINS I T, et al. Estimating environmental hazard and risks from exposure to per- and polyfluoroalkyl substances (PFASs): Outcome of a SETAC focused topic meeting [J]. Environmental Toxicology and Chemistry, 2021, 40(3): 543-549. doi: 10.1002/etc.4784
[19] 郝薛文, 李力, 王杰, 等. 全氟和多氟烷基化合物的环境风险评估研究现状、不确定性与趋势分析 [J]. 环境科学, 2015, 36(8): 3106-3118. HAO X W, LI L, WANG J, et al. Status quo, uncertainties and trends analysis of environmental risk assessment for PFASs [J]. Environmental Science, 2015, 36(8): 3106-3118(in Chinese).
[20] ULHAQ M, CARLSSON G, ÖRN S, et al. Comparison of developmental toxicity of seven perfluoroalkyl acids to zebrafish embryos [J]. Environmental Toxicology and Pharmacology, 2013, 36(2): 423-426. doi: 10.1016/j.etap.2013.05.004
[21] RITTER S K. Fluorochemicals go short [J]. Chemical & Engineering News Archive, 2010, 88(5): 12-17.
[22] The new POPs under the Stockholm Convention [EB/OL]. [2021-5-12]. http://www.pops.int/TheConvention/ThePOPs/TheNewPOPs/tabid/2511/Default.aspx.
[23] STOIBER T, EVANS S, NAIDENKO O V. Disposal of products and materials containing per- and polyfluoroalkyl substances (PFAS): A cyclical problem [J]. Chemosphere, 2020, 260: 127659. doi: 10.1016/j.chemosphere.2020.127659
[24] HAMID H, LI L Y, GRACE J R. Review of the fate and transformation of per- and polyfluoroalkyl substances (PFASs) in landfills [J]. Environmental Pollution, 2018, 235: 74-84. doi: 10.1016/j.envpol.2017.12.030
[25] BOLAN N, SARKAR B, YAN Y B, et al. Remediation of poly- and perfluoroalkyl substances (PFAS) contaminated soils - To mobilize or to immobilize or to degrade? [J]. Journal of Hazardous Materials, 2021, 401: 123892. doi: 10.1016/j.jhazmat.2020.123892
[26] HEPBURN E, MADDEN C, SZABO D, et al. Contamination of groundwater with per- and polyfluoroalkyl substances (PFAS) from legacy landfills in an urban re-development precinct [J]. Environmental Pollution, 2019, 248: 101-113. doi: 10.1016/j.envpol.2019.02.018
[27] HARRAD S, DRAGE D S, SHARKEY M, et al. Perfluoroalkyl substances and brominated flame retardants in landfill-related air, soil, and groundwater from Ireland [J]. Science of the Total Environment, 2020, 705: 135834. doi: 10.1016/j.scitotenv.2019.135834
[28] WEI Z S, XU T Y, ZHAO D Y. Treatment of per- and polyfluoroalkyl substances in landfill leachate: Status, chemistry and prospects [J]. Environmental Science:Water Research & Technology, 2019, 5(11): 1814-1835.
[29] ABUNADA Z, ALAZAIZA M Y D, BASHIR M J K. An overview of per- and polyfluoroalkyl substances (PFAS) in the environment: Source, fate, risk and regulations [J]. Water, 2020, 12(12): 3590. doi: 10.3390/w12123590
[30] SOLO-GABRIELE H M, JONES A S, LINDSTROM A B, et al. Waste type, incineration, and aeration are associated with per- and polyfluoroalkyl levels in landfill leachates [J]. Waste Management, 2020, 107: 191-200. doi: 10.1016/j.wasman.2020.03.034
[31] YAN H, COUSINS I T, ZHANG C J, et al. Perfluoroalkyl acids in municipal landfill leachates from China: Occurrence, fate during leachate treatment and potential impact on groundwater [J]. Science of the Total Environment, 2015, 524/525: 23-31. doi: 10.1016/j.scitotenv.2015.03.111
[32] ROBEY N M, da SILVA B F, ANNABLE M D, et al. Concentrating per- and polyfluoroalkyl substances (PFAS) in municipal solid waste landfill leachate using foam separation [J]. Environmental Science & Technology, 2020, 54(19): 12550-12559.
[33] ZHANG C H, PENG Y, NING K, et al. Remediation of perfluoroalkyl substances in landfill leachates by electrocoagulation [J]. Clean - Soil, Air, Water, 2014, 42(12): 1740-1743. doi: 10.1002/clen.201300563
[34] SINGH R K, BROWN E, THAGARD S M, et al. Treatment of PFAS-containing landfill leachate using an enhanced contact plasma reactor [J]. Journal of Hazardous Materials, 2021, 408: 124452. doi: 10.1016/j.jhazmat.2020.124452
[35] KOTTHOFF M, MÜLLER J, JÜRLING H, et al. Perfluoroalkyl and polyfluoroalkyl substances in consumer products [J]. Environmental Science and Pollution Research International, 2015, 22(19): 14546-14559. doi: 10.1007/s11356-015-4202-7
[36] SCHAIDER L A, BALAN S A, BLUM A, et al. Fluorinated compounds in US fast food packaging [J]. Environmental Science & Technology Letters, 2017, 4(3): 105-111.
[37] YE F, ZUSHI Y, MASUNAGA S. Survey of perfluoroalkyl acids (PFAAs) and their precursors present in Japanese consumer products [J]. Chemosphere, 2015, 127: 262-268. doi: 10.1016/j.chemosphere.2015.02.026
[38] XIE S W, WANG T Y, LIU S J, et al. Industrial source identification and emission estimation of perfluorooctane sulfonate in China [J]. Environment International, 2013, 52: 1-8. doi: 10.1016/j.envint.2012.11.004
[39] WANG T Y, WANG P, MENG J, et al. A review of sources, multimedia distribution and health risks of perfluoroalkyl acids (PFAAs) in China [J]. Chemosphere, 2015, 129: 87-99. doi: 10.1016/j.chemosphere.2014.09.021
[40] VENKATESAN A K, HALDEN R U. National inventory of perfluoroalkyl substances in archived US biosolids from the 2001 EPA National Sewage Sludge Survey [J]. Journal of Hazardous Materials, 2013, 252/253: 413-418. doi: 10.1016/j.jhazmat.2013.03.016
[41] BEČANOVÁ J, MELYMUK L, VOJTA Š, et al. Screening for perfluoroalkyl acids in consumer products, building materials and wastes [J]. Chemosphere, 2016, 164: 322-329. doi: 10.1016/j.chemosphere.2016.08.112
[42] SCHULTES L, VESTERGREN R, VOLKOVA K, et al. Per- and polyfluoroalkyl substances and fluorine mass balance in cosmetic products from the Swedish market: Implications for environmental emissions and human exposure [J]. Environmental Science. Processes & Impacts, 2018, 20(12): 1680-1690.
[43] BADUEL C, MUELLER J F, ROTANDER A, et al. Discovery of novel per- and polyfluoroalkyl substances (PFASs) at a fire fighting training ground and preliminary investigation of their fate and mobility [J]. Chemosphere, 2017, 185: 1030-1038. doi: 10.1016/j.chemosphere.2017.06.096
[44] STRYNAR M, DAGNINO S, MCMAHEN R, et al. Identification of novel perfluoroalkyl ether carboxylic acids (PFECAs) and sulfonic acids (PFESAs) in natural waters using accurate mass time-of-flight mass spectrometry (TOFMS) [J]. Environmental Science & Technology, 2015, 49(19): 11622-11630.
[45] LIU Y N, QIAN M L, MA X X, et al. Nontarget mass spectrometry reveals new perfluoroalkyl substances in fish from the Yangtze River and Tangxun Lake, China [J]. Environmental Science & Technology, 2018, 52(10): 5830-5840.
[46] WANG B, YAO Y M, CHEN H, et al. Per- and polyfluoroalkyl substances and the contribution of unknown precursors and short-chain (C2-C3) perfluoroalkyl carboxylic acids at solid waste disposal facilities [J]. Science of the Total Environment, 2020, 705: 135832. doi: 10.1016/j.scitotenv.2019.135832
[47] HUSET C A, BARLAZ M A, BAROFSKY D F, et al. Quantitative determination of fluorochemicals in municipal landfill leachates [J]. Chemosphere, 2011, 82(10): 1380-1386. doi: 10.1016/j.chemosphere.2010.11.072
[48] OLIAEI F, KRIENS D, WEBER R, et al. PFOS and PFC releases and associated pollution from a PFC production plant in Minnesota (USA) [J]. Environmental Science and Pollution Research International, 2013, 20(4): 1977-1992. doi: 10.1007/s11356-012-1275-4
[49] LI B, DANON-SCHAFFER M N, LI L Y, et al. Occurrence of PFCs and PBDEs in landfill leachates from across Canada [J]. Water, Air, & Soil Pollution, 2012, 223(6): 3365-3372.
[50] BENSKIN J P, LI B, IKONOMOU M G, et al. Per- and polyfluoroalkyl substances in landfill leachate: Patterns, time trends, and sources [J]. Environmental Science & Technology, 2012, 46(21): 11532-11540.
[51] BOSSI R, STRAND J, SORTKJÆR O, et al. Perfluoroalkyl compounds in Danish wastewater treatment plants and aquatic environments [J]. Environment International, 2008, 34(4): 443-450. doi: 10.1016/j.envint.2007.10.002
[52] BUSCH J, AHRENS L, STURM R, et al. Polyfluoroalkyl compounds in landfill leachates [J]. Environmental Pollution, 2010, 158(5): 1467-1471. doi: 10.1016/j.envpol.2009.12.031
[53] ESCHAUZIER C, RAAT K J, STUYFZAND P J, et al. Perfluorinated alkylated acids in groundwater and drinking water: Identification, origin and mobility [J]. Science of the Total Environment, 2013, 458/459/460: 477-485.
[54] PERKOLA N, SAINIO P. Survey of perfluorinated alkyl acids in Finnish effluents, storm water, landfill leachate and sludge [J]. Environmental Science and Pollution Research International, 2013, 20(11): 7979-7987. doi: 10.1007/s11356-013-1518-z
[55] 崔毓莹, 牛夏梦, 唐佳伟, 等. 北京市典型垃圾填埋场渗滤液中PFASs污染水平研究 [J]. 环境化学, 2019, 38(9): 2038-2046. doi: 10.7524/j.issn.0254-6108.2018120601 CUI Y Y, NIU X M, TANG J W, et al. Distribution and pollution level of PFASs in leachate from typical refuse landfills in Beijing [J]. Environmental Chemistry, 2019, 38(9): 2038-2046(in Chinese). doi: 10.7524/j.issn.0254-6108.2018120601
[56] 谷萌, 魏潇潇, 刘华祖, 等. 垃圾填埋与焚烧渗滤液全(多)氟化合物赋存特征 [J]. 中国环境科学, 2020, 40(4): 1555-1562. doi: 10.3969/j.issn.1000-6923.2020.04.021 GU M, WEI X X, LIU H Z, et al. Occurrence of per-and polyfluoroalkyl substances in leachates from landfills and incineration plants [J]. China Environmental Science, 2020, 40(4): 1555-1562(in Chinese). doi: 10.3969/j.issn.1000-6923.2020.04.021
[57] ALLRED B M, LANG J R, BARLAZ M A, et al. Orthogonal zirconium diol/C18 liquid chromatography-tandem mass spectrometry analysis of poly and perfluoroalkyl substances in landfill leachate [J]. Journal of Chromatography A, 2014, 1359: 202-211. doi: 10.1016/j.chroma.2014.07.056
[58] LANG J R, ALLRED B M, FIELD J A, et al. National estimate of per- and polyfluoroalkyl substance (PFAS) release to US municipal landfill leachate [J]. Environmental Science & Technology, 2017, 51(4): 2197-2205.
[59] WANG Z Y, COUSINS I T, SCHERINGER M, et al. Fluorinated alternatives to long-chain perfluoroalkyl carboxylic acids (PFCAs), perfluoroalkane sulfonic acids (PFSAs) and their potential precursors [J]. Environment International, 2013, 60: 242-248. doi: 10.1016/j.envint.2013.08.021
[60] HIGGINS C P, LUTHY R G. Sorption of perfluorinated surfactants on sediments [J]. Environmental Science & Technology, 2006, 40(23): 7251-7256.
[61] GALLEN C, DRAGE D, EAGLESHAM G, et al. Australia-wide assessment of perfluoroalkyl substances (PFASs) in landfill leachates [J]. Journal of Hazardous Materials, 2017, 331: 132-141. doi: 10.1016/j.jhazmat.2017.02.006
[62] KNUTSEN H, MÆHLUM T, HAARSTAD K, et al. Leachate emissions of short- and long-chain per- and polyfluoralkyl substances (PFASs) from various Norwegian landfills [J]. Environmental Science. Processes & Impacts, 2019, 21(11): 1970-1979.
[63] AHRENS L, SHOEIB M, HARNER T, et al. Wastewater treatment plant and landfills as sources of polyfluoroalkyl compounds to the atmosphere [J]. Environmental Science & Technology, 2011, 45(19): 8098-8105.
[64] WEINBERG I, DREYER A, EBINGHAUS R. Landfills as sources of polyfluorinated compounds, polybrominated diphenyl ethers and musk fragrances to ambient air [J]. Atmospheric Environment, 2011, 45(4): 935-941. doi: 10.1016/j.atmosenv.2010.11.011
[65] TIAN Y, YAO Y M, CHANG S, et al. Occurrence and phase distribution of neutral and ionizable per- and polyfluoroalkyl substances (PFASs) in the atmosphere and plant leaves around landfills: A case study in Tianjin, China [J]. Environmental Science & Technology, 2018, 52(3): 1301-1310.
[66] JIN H B, SHAN G Q, ZHU L Y, et al. Perfluoroalkyl acids including isomers in tree barks from a Chinese fluorochemical manufacturing park: Implication for airborne transportation [J]. Environmental Science & Technology, 2018, 52(4): 2016-2024.
[67] KIM J W, TUE N M, ISOBE T, et al. Contamination by perfluorinated compounds in water near waste recycling and disposal sites in Vietnam [J]. Environmental Monitoring and Assessment, 2013, 185(4): 2909-2919. doi: 10.1007/s10661-012-2759-x
[68] YIN T R, CHEN H T, REINHARD M, et al. Perfluoroalkyl and polyfluoroalkyl substances removal in a full-scale tropical constructed wetland system treating landfill leachate [J]. Water Research, 2017, 125: 418-426. doi: 10.1016/j.watres.2017.08.071
[69] GEWURTZ S B, BACKUS S M, de SILVA A O, et al. Perfluoroalkyl acids in the Canadian environment: Multi-media assessment of current status and trends [J]. Environment International, 2013, 59: 183-200. doi: 10.1016/j.envint.2013.05.008
[70] FUERTES I, GÓMEZ-LAVÍN S, ELIZALDE M P, et al. Perfluorinated alkyl substances (PFASs) in northern Spain municipal solid waste landfill leachates [J]. Chemosphere, 2017, 168: 399-407. doi: 10.1016/j.chemosphere.2016.10.072
[71] GOBELIUS L, HEDLUND J, DÜRIG W, et al. Per- and polyfluoroalkyl substances in Swedish groundwater and surface water: Implications for environmental quality standards and drinking water guidelines [J]. Environmental Science & Technology, 2018, 52(7): 4340-4349.
[72] HARRAD S, DRAGE D S, SHARKEY M, et al. Brominated flame retardants and perfluoroalkyl substances in landfill leachate from Ireland [J]. Science of the Total Environment, 2019, 695: 133810. doi: 10.1016/j.scitotenv.2019.133810
[73] GALLEN C, DRAGE D, KASERZON S, et al. Occurrence and distribution of brominated flame retardants and perfluoroalkyl substances in Australian landfill leachate and biosolids [J]. Journal of Hazardous Materials, 2016, 312: 55-64. doi: 10.1016/j.jhazmat.2016.03.031
[74] HAMID H, LI L Y, GRACE J R. Aerobic biotransformation of fluorotelomer compounds in landfill leachate-sediment [J]. Science of the Total Environment, 2020, 713: 136547. doi: 10.1016/j.scitotenv.2020.136547
[75] ALLRED B M, LANG J R, BARLAZ M A, et al. Physical and biological release of poly- and perfluoroalkyl substances (PFASs) from municipal solid waste in anaerobic model landfill reactors [J]. Environmental Science & Technology, 2015, 49(13): 7648-7656.
[76] LANG J R, ALLRED B M, PEASLEE G F, et al. Release of per- and polyfluoroalkyl substances (PFASs) from carpet and clothing in model anaerobic landfill reactors [J]. Environmental Science & Technology, 2016, 50(10): 5024-5032.
[77] ZHANG S, SZOSTEK B, MCCAUSLAND P K, et al. 6: 2 and 8: 2 fluorotelomer alcohol anaerobic biotransformation in digester sludge from a WWTP under methanogenic conditions [J]. Environmental Science & Technology, 2013, 47(9): 4227-4235.
[78] KIM M, LI L Y, GRACE J R, et al. Compositional effects on leaching of stain-guarded (perfluoroalkyl and polyfluoroalkyl substance-treated) carpet in landfill leachate [J]. Environmental Science & Technology, 2015, 49(11): 6564-6573.
[79] ARVANITI O S, STASINAKIS A S. Review on the occurrence, fate and removal of perfluorinated compounds during wastewater treatment [J]. Science of the Total Environment, 2015, 524/525: 81-92. doi: 10.1016/j.scitotenv.2015.04.023
[80] 王凯, 武道吉, 彭永臻, 等. 垃圾渗滤液处理工艺研究及应用现状浅析 [J]. 北京工业大学学报, 2018, 44(1): 1-12. WANG K, WU D J, PENG Y Z, et al. Critical review of landfill leachate treatment technologies [J]. Journal of Beijing University of Technology, 2018, 44(1): 1-12(in Chinese).
[81] LEBRON Y A R, MOREIRA V R, BRASIL Y L, et al. A survey on experiences in leachate treatment: Common practices, differences worldwide and future perspectives [J]. Journal of Environmental Management, 2021, 288: 112475. doi: 10.1016/j.jenvman.2021.112475
[82] MIRALLES-MARCO A, HARRAD S. Perfluorooctane sulfonate: A review of human exposure, biomonitoring and the environmental forensics utility of its chirality and isomer distribution [J]. Environment International, 2015, 77: 148-159. doi: 10.1016/j.envint.2015.02.002
[83] LIU J X, LEE L S, NIES L F, et al. Biotransformation of 8: 2 fluorotelomer alcohol in soil and by soil bacteria isolates [J]. Environmental Science & Technology, 2007, 41(23): 8024-8030.
[84] WANG N, SZOSTEK B, BUCK R C, et al. 8-2 Fluorotelomer alcohol aerobic soil biodegradation: Pathways, metabolites, and metabolite yields [J]. Chemosphere, 2009, 75(8): 1089-1096. doi: 10.1016/j.chemosphere.2009.01.033
[85] WANG N, SZOSTEK B, FOLSOM P W, et al. Aerobic biotransformation of 14C-labeled 8-2 telomer B alcohol by activated sludge from a domestic sewage treatment plant [J]. Environmental Science & Technology, 2005, 39(2): 531-538.
[86] ZHAO L J, MCCAUSLAND P K, FOLSOM P W, et al. 6: 2 Fluorotelomer alcohol aerobic biotransformation in activated sludge from two domestic wastewater treatment plants [J]. Chemosphere, 2013, 92(4): 464-470. doi: 10.1016/j.chemosphere.2013.02.032
[87] ZHANG S, LU X X, WANG N, et al. Biotransformation potential of 6: 2 fluorotelomer sulfonate (6: 2 FTSA) in aerobic and anaerobic sediment [J]. Chemosphere, 2016, 154: 224-230. doi: 10.1016/j.chemosphere.2016.03.062
[88] ZHAO L J, FOLSOM P W, WOLSTENHOLME B W, et al. 6: 2 Fluorotelomer alcohol biotransformation in an aerobic river sediment system [J]. Chemosphere, 2013, 90(2): 203-209. doi: 10.1016/j.chemosphere.2012.06.035
[89] 李丛林. 论膜技术在垃圾渗滤液处理中的应用 [J]. 资源节约与环保, 2020(11): 115-116. doi: 10.3969/j.issn.1673-2251.2020.11.062 LI C L. Application of membrane technology in landfill leachate treatment [J]. Resources Economization & Environmental Protection, 2020(11): 115-116(in Chinese). doi: 10.3969/j.issn.1673-2251.2020.11.062
[90] 张亚通, 朱鹏毅, 朱建华, 等. 垃圾渗滤液膜截留浓缩液处理工艺研究进展 [J]. 工业水处理, 2019, 39(9): 18-23. doi: 10.11894/iwt.2018-0876 ZHANG Y T, ZHU P Y, ZHU J H, et al. Evolution of the treatment for membrane filtration concentrate of landfill leachate [J]. Industrial Water Treatment, 2019, 39(9): 18-23(in Chinese). doi: 10.11894/iwt.2018-0876