[1] WAGNER S, JAFFÉ R, STUBBINS A. Dissolved black carbon in aquatic ecosystems [J]. Limnology and Oceanography Letters, 2018, 3(3): 168-185. doi: 10.1002/lol2.10076
[2] 魏晨辉, 付翯云, 瞿晓磊, 等. 溶解态黑碳的环境过程研究 [J]. 化学进展, 2017, 29(9): 1042-1052. doi: 10.7536/PC170444 WEI C H, FU H Y, QU X L, et al. Environmental processes of dissolved black carbon [J]. Progress in Chemistry, 2017, 29(9): 1042-1052(in Chinese). doi: 10.7536/PC170444
[3] JAFFÉ R, DING Y, NIGGEMANN J, et al. Global charcoal mobilization from soils via dissolution and riverine transport to the oceans [J]. Science, 2013, 340(6130): 345-347. doi: 10.1126/science.1231476
[4] FANG G, GAO J, LIU C, et al. Key role of persistent free radicals in hydrogen peroxide activation by biochar: implications to organic contaminant degradation [J]. Environmental Science & Technology, 2014, 48(3): 1902-1910.
[5] FANG G, ZHU C, DIONYSIOU D D, et al. Mechanism of hydroxyl radical generation from biochar suspensions: implications to diethyl phthalate degradation [J]. Bioresource Technology, 2015, 176(176): 210-217.
[6] ZAFIRIOU O C, JOUSSOT-DUBIEN J, ZEPP R G, et al. Photochemistry of natural waters [J]. Environmental Science & Technology, 1984, 18(12): 358A-371A.
[7] ZHOU H X, LIAN L S, YAN S W, et al. Insights into the photo-induced formation of reactive intermediates from effluent organic matter: the role of chemical constituents [J]. Water Research, 2017, 112: 120-128. doi: 10.1016/j.watres.2017.01.048
[8] MCKAY G, HUANG W X, ROMERA-CASTILLO C, et al. Predicting reactive intermediate quantum yields from dissolved organic matter photolysis using optical properties and antioxidant capacity [J]. Environmental Science & Technology, 2017, 51(10): 5404-5413.
[9] BODHIPAKSHA L C, SHARPLESS C M, CHIN Y P, et al. Triplet photochemistry of effluent and natural organic matter in whole water and isolates from effluent-receiving rivers [J]. Environmental Science & Technology, 2015, 49(6): 3453-3463.
[10] DU Z Y, HE Y S, FAN J N, et al. Predicting apparent singlet oxygen quantum yields of dissolved black carbon and humic substances using spectroscopic indices [J]. Chemosphere, 2018, 194: 405-413. doi: 10.1016/j.chemosphere.2017.11.172
[11] FU H Y, WEI C H, QU X L, et al. Strong binding of apolar hydrophobic organic contaminants by dissolved black carbon released from biochar: a mechanism of pseudomicelle partition and environmental implications [J]. Environmental Pollution, 2018, 232: 402-410. doi: 10.1016/j.envpol.2017.09.053
[12] WANG H, ZHOU H X, MA J Z, et al. Triplet photochemistry of dissolved black carbon and its effects on the photochemical formation of reactive oxygen species [J]. Environmental Science & Technology, 2020.
[13] FU H Y, LIU H T, MAO J D, et al. Photochemistry of dissolved black carbon released from biochar: reactive oxygen species generation and phototransformation [J]. Environmental Science & Technology, 2016, 50(3): 1218-1226.
[14] ZHOU Z C, CHEN B N, QU X L, et al. Dissolved black carbon as an efficient sensitizer in the photochemical transformation of 17β-Estradiol in aqueous solution [J]. Environmental Science & Technology, 2018, 52(18): 10391-10399.
[15] TIAN Y J, FENG L, WANG C, et al. Dissolved black carbon enhanced the aquatic photo-transformation of chlortetracycline via tripet excited-state species: the role of chemical composition [J]. Environmental Research, 2019, 179(B): 108855.
[16] WEI S Y, ZHU M B, SONG J Z, et al. Comprehensive characterization of biochars produced from three major crop straws of China [J]. BioResources, 2017, 12(2): 3316-3330.
[17] LASZAKOVITS J R, BERG S M, ANDERSON B G, et al. p-Nitroanisole/pyridine and p-Nitroacetophenone/pyridine actinometers revisited: quantum yields in comparison to ferrioxalate [J]. Environmental Science & Technology, 2017, 4(1): 11-14.
[18] DALRYMPLE R M, CARFAGNO A K, SHARPLESS C M. Correlations between dissolved organic matter optical properties and quantum yields of singlet oxygen and hydrogen peroxide [J]. Environmental Science & Technology, 2010, 44(15): 5824-5829.
[19] ZEPP R G, SHANK G C, STABENAU E, et al. Spatial and temporal variability of solar ultraviolet exposure of coral assemblages in the Florida keys: importance of colored dissolved organic matter [J]. Limnology and Oceanography, 2008, 53(5): 1909-1922. doi: 10.4319/lo.2008.53.5.1909
[20] FICHOT C G, BENNER R. The spectral slope coefficient of chromophoric dissolved organic matter (S275-295) as a tracer of terrigenous dissolved organic carbon in river-influenced ocean margins [J]. Limnology and Oceanography, 2012, 57(5): 1453-1466. doi: 10.4319/lo.2012.57.5.1453
[21] PETERSON B M, MCNALLY A M, CORY R M, et al. Spatial and temporal distribution of singlet oxygen in lake superior [J]. Environmental Science & Technology, 2012, 46(13): 7222-7229.
[22] HAAG W R, HOIGNE J. Singlet oxygen in surface waters. 3. photochemical formation and steady-state concentrations in various types of waters [J]. Environmental Science & Technology, 1986, 20(4): 341-348.
[23] SHARPLESS C M. Lifetimes of triplet dissolved natural organic matter (DOM) and the effect of NaBH4 reduction on singlet oxygen quantum yields: implications for DOM photophysics [J]. Environmental Science & Technology, 2012, 46(8): 4466-4473.
[24] MCKNIGHT D M, BOYER E W, WESTERHOFF P K, et al. Spectrofluorometric characterization of dissolved organic matter for indication of precursor organic material and aromaticity [J]. Limnology and Oceanography, 2001, 46(1): 38-48. doi: 10.4319/lo.2001.46.1.0038
[25] XU F C, WEI C H, ZENG Q Q, et al. Aggregation behavior of dissolved black carbon: Implications for vertical mass flux and fractionation in aquatic systems [J]. Environmental Science & Technology, 2017, 51(23): 13723-13732.
[26] 简敏菲, 高凯芳, 余厚平. 不同裂解温度对水稻秸秆制备生物炭及其特性的影响 [J]. 环境科学学报, 2016, 36(5): 1757-1765. JIAN M F, GAO K F, YU H P. Effect of different pyrolysis temperatures on the preparation and characteristics of bio-char from rice straw [J]. Acta Scientiae Circumstantiae, 2016, 36(5): 1757-1765(in Chinese).
[27] 饶潇潇, 方昭, 王建超, 等. 花生壳生物炭的制备、表征及其吸附性能 [J]. 环境科学与技术, 2017, 40(6): 14-18. RAO X X, FANG Z, WANG J C, et al. Preparation, characterization and absorption properties of peanut-shells-derived biochars [J]. Environmental Science & Technology, 2017, 40(6): 14-18(in Chinese).
[28] 潘萌娇, 孙姣, 贺强, 等. 热解终温和加热速率对棉杆热解生物炭的影响研究 [J]. 河北工业大学学报, 2014, 43(5): 60-66. PAN M J, SUN J, HE Q, et al. The effect of pyrolysis temperature and heating rate on biochar obtained from pyrolysis of cotton stalk [J]. Journal of Hebei University of Technology, 2014, 43(5): 60-66(in Chinese).
[29] ZHOU C Z, XIE Q, WANG J Q, et al. Effects of dissolved organic matter derived from freshwater and seawater on photodegradation of three antiviral drugs [J]. Environmental Pollution, 2020, 258: 113700-113707. doi: 10.1016/j.envpol.2019.113700
[30] HELMS J R, STUBBINS A, RITCHIE J D, et al. Absorption spectral slopes and slope ratios as indicators of molecular weight, source, and photobleaching of chromophoric dissolved organic matter [J]. Limnology and Oceanography, 2008, 53(3): 955-969. doi: 10.4319/lo.2008.53.3.0955
[31] DALZELL B J, MINOR E C, MOPPER K M. Photodegradation of estuarine dissolved organic matter: a multi-method assessment of DOM transformation [J]. Organic Geochemistry, 2009, 40(2): 243-257. doi: 10.1016/j.orggeochem.2008.10.003
[32] XIAO X, CHEN B L. A direct observation of the fine aromatic clusters and molecular structures of biochars [J]. Environmental Science & Technology, 2017, 51(10): 5473-5482.
[33] JANSSEN E M, ERICKSON P R, MCNEIL K. Dual roles of dissolved organic matter as sensitizer and quencher in the photooxidation of tryptophan [J]. Environmental Science & Technology, 2014, 48(9): 4916-4924.
[34] BOREEN A L, ARNOLD W A, MCNEIL K. Phtochemical fate of sulfa drugs in the aquatic environment: sulfa drugs containing five-membered heterocyclic groups [J]. Environmental Science & Technology, 2004, 38(14): 3933-3940.
[35] LI Y J, WEI X X, CHEN J W, et al. Phtodegradation mechanism of sulfonamides with excited triplet state dissolved organic matter: A case of sulfadiazine with 4-carboxybenzophenone as a proxy [J]. Journal of Hazardous Materials, 2015, 290: 9-15. doi: 10.1016/j.jhazmat.2015.02.040
[36] MCNEIL K, CANONICA S. Triplet state dissolved organic matter in aquatic photochemistry: reaction mechanisms, substrate scope, and photophysical properties [J]. Environmental Science Process & Impacts, 2016, 18(11): 1381-1399.
[37] POZDNYAKOV I P, SHERIN P S, SALOMATOVA V A, et al. Photooxidation of herbicide amitrole in the presence of fulvic acid [J]. Environmental Science and Pollution Research International, 2018, 25(21): 20320-20327. doi: 10.1007/s11356-017-8580-x
[38] 刘雪石, 乔显亮, 刘远. DOM的光化学活性及其对污染物光解的影响 [J]. 环境科学与技术, 2017, 40(1): 85-94. LIU X S, QIAO X L, LIU Y. Photoreactivity of DOM and its effect on the photo-transformation of pollutants [J]. Environmental Science & Technology, 2017, 40(1): 85-94(in Chinese).
[39] CHEN N, HUANG Y H, HOU X J, et al. Photochemistry of hydrochar: reactive oxygen species generation and sulfadimidine degradation [J]. Environmental Science & Technology, 2017, 51(19): 11278-11287.
[40] LI L L, WANG X J, FU H Y, et al. Dissolved black carbon facilitates photoreduction of Hg(Ⅱ) to Hg(0) and reduces mercury uptake by lettuce (Lactuca sativa L. ) [J]. Environmental Science & Technology, 2020, 54(18): 11137-11145.
[41] 马哲, 王杰琼, 陈景文, 等. pH对不同来源溶解性有机质光致生成活性物种量子产率的影响 [J]. 环境化学, 2017, 36(9): 5-11. MA Z, WANG J Q, CHEN J W, et al. Effect of pH on the quantum yield of reactive photo-induced species generated in different sources of DOM [J]. Environmental Chemistry, 2017, 36(9): 5-11(in Chinese).