[1] BARROS W R P, ERENO T, TAVARES A C, et al. In situ electrochemical generation of hydrogen peroxide in alkaline aqueous solution by using an unmodified gas diffusion electrode [J]. ChemElectroChem, 2015, 2(5): 714-719. doi: 10.1002/celc.201402426
[2] YAN L, HUANG Y Y, CUI J L, et al. Simultaneous As(III) and Cd removal from copper smelting wastewater using granular TiO2 columns [J]. Water Research, 2015, 68: 572-579. doi: 10.1016/j.watres.2014.10.042
[3] LI W, PATTON S, GLEASON J M, et al. UV photolysis of chloramine and persulfate for 1, 4-dioxane removal in reverse-osmosis permeate for potable water reuse [J]. Environmental Science & Technology, 2018, 52(11): 6417-6425.
[4] HUA Y N, WANG S, XIAO J, et al. Preparation and characterization of Fe3O4/Gallic acid/graphene oxide magnetic nanocomposites as highly efficient Fenton catalysts [J]. RSC Advances, 2017, 7(46): 28979-28986. doi: 10.1039/C6RA23939K
[5] LIU Z, DEMEESTERE K, Van HULLE S. Pretreatment of secondary effluents in view of optimal ozone-based AOP removal of trace organic contaminants: Bench-scale comparison of efficiency and energy consumption [J]. Industrial & Engineering Chemistry Research, 2020, 59(16): 8112-8120.
[6] HE D Q, WANG L F, JIANG H, et al. A Fenton-like process for the enhanced activated sludge dewatering [J]. Chemical Engineering Journal, 2015, 272: 128-134. doi: 10.1016/j.cej.2015.03.034
[7] 吕来, 胡春. 多相芬顿催化水处理技术与原理 [J]. 化学进展, 2017, 29(9): 981-999. doi: 10.7536/PC170552 LYU L, HU C. Heterogeneous Fenton catalytic water treatment technology and mechanism [J]. Progress in Chemistry, 2017, 29(9): 981-999(in Chinese). doi: 10.7536/PC170552
[8] XAVIER S, GANDHIMATHI R, NIDHEESH P V, et al. Comparison of homogeneous and heterogeneous Fenton processes for the removal of reactive dye Magenta MB from aqueous solution [J]. Desalination and Water Treatment, 2015, 53(1): 109-118. doi: 10.1080/19443994.2013.844083
[9] CAUDO S, CENTI G, GENOVESE C, et al. Homogeneous versus heterogeneous catalytic reactions to eliminate organics from waste water using H2O2 [J]. Topics in Catalysis, 2006, 40(1/2/3/4): 207-219.
[10] LI J Y, PHAM A N, DAI R B, et al. Recent advances in Cu-Fenton systems for the treatment of industrial wastewaters: Role of Cu complexes and Cu composites [J]. Journal of Hazardous Materials, 2020, 392: 122261. doi: 10.1016/j.jhazmat.2020.122261
[11] YAO Y J, CAI Y M, WU G D, et al. Sulfate radicals induced from peroxymonosulfate by cobalt manganese oxides (CoxMn3−xO4) for Fenton-Like reaction in water [J]. Journal of Hazardous Materials, 2015, 296: 128-137. doi: 10.1016/j.jhazmat.2015.04.014
[12] TANG D D, ZHANG G K, GUO S. Efficient activation of peroxymonosulfate by manganese oxide for the degradation of azo dye at ambient condition [J]. Journal of Colloid and Interface Science, 2015, 454: 44-51. doi: 10.1016/j.jcis.2015.05.009
[13] LEE J, Von GUNTEN U, KIM J H. Persulfate-based advanced oxidation: Critical assessment of opportunities and roadblocks [J]. Environmental Science & Technology, 2020, 54(6): 3064-3081.
[14] CHENG X, GUO H G, ZHANG Y L, et al. Non-photochemical production of singlet oxygen via activation of persulfate by carbon nanotubes [J]. Water Research, 2017, 113: 80-88. doi: 10.1016/j.watres.2017.02.016
[15] YUN E T, LEE J H, KIM J, et al. Identifying the nonradical mechanism in the peroxymonosulfate activation process: Singlet oxygenation versus mediated electron transfer [J]. Environmental Science & Technology, 2018, 52(12): 7032-7042.
[16] LIANG P, ZHANG C, DUAN X G, et al. N-doped graphene from metal-organic frameworks for catalytic oxidation of p-hydroxylbenzoic acid: N-functionality and mechanism [J]. ACS Sustainable Chemistry & Engineering, 2017, 5(3): 2693-2701.
[17] LIANG P, ZHANG C, DUAN X G, et al. An insight into metal organic framework derived N-doped graphene for the oxidative degradation of persistent contaminants: Formation mechanism and generation of singlet oxygen from peroxymonosulfate [J]. Environmental Science:Nano, 2017, 4(2): 315-324. doi: 10.1039/C6EN00633G
[18] WANG Y B, LIU M, ZHAO X, et al. Insights into heterogeneous catalysis of peroxymonosulfate activation by boron-doped ordered mesoporous carbon [J]. Carbon, 2018, 135: 238-247. doi: 10.1016/j.carbon.2018.01.106
[19] YIN R L, GUO W Q, WANG H Z, et al. Singlet oxygen-dominated peroxydisulfate activation by sludge-derived biochar for sulfamethoxazole degradation through a nonradical oxidation pathway: Performance and mechanism [J]. Chemical Engineering Journal, 2019, 357: 589-599. doi: 10.1016/j.cej.2018.09.184
[20] REN W, NIE G, ZHOU P, et al. The intrinsic nature of persulfate activation and N-doping in carbocatalysis [J]. Environmental Science & Technology, 2020, 54(10): 6438-6447.
[21] REN W, XIONG L L, YUAN X H, et al. Activation of peroxydisulfate on carbon nanotubes: Electron-transfer mechanism [J]. Environmental Science & Technology, 2019, 53(24): 14595-14603.
[22] SHAO P H, YU S P, DUAN X G, et al. Potential difference driving electron transfer via defective carbon nanotubes toward selective oxidation of organic micropollutants [J]. Environmental Science & Technology, 2020, 54(13): 8464-8472.
[23] REN W, XIONG L L, NIE G, et al. Insights into the electron-transfer regime of peroxydisulfate activation on carbon nanotubes: The role of oxygen functional groups [J]. Environmental Science & Technology, 2020, 54(2): 1267-1275.
[24] NIDHEESH P V, GANDHIMATHI R, VELMATHI S, et al. Magnetite as a heterogeneous electro Fenton catalyst for the removal of Rhodamine B from aqueous solution [J]. RSC Advances, 2014, 4(11): 5698. doi: 10.1039/c3ra46969g
[25] XIA M, LONG M C, YANG Y D, et al. A highly active bimetallic oxides catalyst supported on Al-containing MCM-41 for Fenton oxidation of phenol solution [J]. Applied Catalysis B:Environmental, 2011, 110: 118-125. doi: 10.1016/j.apcatb.2011.08.033
[26] HE H P, ZHONG Y H, LIANG X L, et al. Natural Magnetite: An efficient catalyst for the degradation of organic contaminant [J]. Scientific Reports, 2015, 5(1): 1-10. doi: 10.9734/JSRR/2015/14076
[27] XU L J, WANG J L. Fenton-like degradation of 2, 4-dichlorophenol using Fe3O4 magnetic nanoparticles [J]. Applied Catalysis B:Environmental, 2012, 123/124: 117-126. doi: 10.1016/j.apcatb.2012.04.028
[28] COSTA R C C, LELIS M F F, OLIVEIRA L C A, et al. Novel active heterogeneous Fenton system based on Fe3−xMxO4 (Fe, Co, Mn, Ni): The role of M2+ species on the reactivity towards H2O2 reactions [J]. Journal of Hazardous Materials, 2006, 129(1/2/3): 171-178.
[29] MARSAC R, PASTUREL M, HANNA K. Reduction kinetics of nitroaromatic compounds by titanium-substituted magnetite [J]. The Journal of Physical Chemistry C, 2017, 121(21): 11399-11406. doi: 10.1021/acs.jpcc.7b01920
[30] LIANG X L, LI Y, WEI G L, et al. Heterogeneous reduction of 2-chloronitrobenzene by Co-substituted magnetite coupled with aqueous Fe2+: Performance, factors, and mechanism [J]. ACS Earth and Space Chemistry, 2019, 3(5): 728-737. doi: 10.1021/acsearthspacechem.8b00204
[31] LI Y, WEI G L, LIANG X L, et al. Metal substitution-induced reducing capacity of magnetite coupled with aqueous Fe(II) [J]. ACS Earth and Space Chemistry, 2020, 4(6): 905-911. doi: 10.1021/acsearthspacechem.0c00089
[32] XIAO J, LAI J H, LI R C, et al. Enhanced ultrasonic-assisted heterogeneous Fenton degradation of organic pollutants over a new copper magnetite (Cu-Fe3O4/Cu/C) nanohybrid catalyst [J]. Industrial & Engineering Chemistry Research, 2020, 59(27): 12431-12440.
[33] HE Z Q, GAO C, QIAN M Q, et al. Electro-Fenton process catalyzed by Fe3O4 magnetic nanoparticles for degradation of C. I. reactive blue 19 in aqueous solution: Operating conditions, influence, and mechanism [J]. Industrial & Engineering Chemistry Research, 2014, 53(9): 3435-3447.
[34] WANG W, LIU Y, LI T L, et al. Heterogeneous Fenton catalytic degradation of phenol based on controlled release of magnetic nanoparticles [J]. Chemical Engineering Journal, 2014, 242: 1-9. doi: 10.1016/j.cej.2013.12.080
[35] WANG Y L, ZHU L, YANG X, et al. Facile synthesis of three-dimensional Mn3O4hierarchical microstructures and their application in the degradation of methylene blue [J]. Journal of Materials Chemistry A, 2015, 3(6): 2934-2941. doi: 10.1039/C4TA05493H
[36] JO Y H, HONG S H, PARK T J, et al. The synthesized and thermally modified Mn-Ca-FeOOH composite in persulfate system: Its role to discolor methylene blue [J]. Applied Surface Science, 2014, 301: 576-583. doi: 10.1016/j.apsusc.2014.02.134
[37] SAPUTRA E, MUHAMMAD S, SUN H Q, et al. Different crystallographic one-dimensional MnO2 nanomaterials and their superior performance in catalytic phenol degradation [J]. Environmental Science & Technology, 2013, 47(11): 5882-5887.
[38] LIU Q R, DUAN X G, SUN H Q, et al. Size-tailored porous spheres of manganese oxides for catalytic oxidation via peroxymonosulfate activation [J]. The Journal of Physical Chemistry C, 2016, 120(30): 16871-16878. doi: 10.1021/acs.jpcc.6b05934
[39] LIU H Z, BRUTON T A, DOYLE F M, et al. In situ chemical oxidation of contaminated groundwater by persulfate: Decomposition by Fe(III)-and Mn(IV)-containing oxides and aquifer materials [J]. Environmental Science & Technology, 2014, 48(17): 10330-10336.
[40] TEPE O. Catalytic removal of remazol brilliant blue R by manganese oxide octahedral molecular sieves and persulfate [J]. Journal of Environmental Engineering, 2018, 144(9): 04018087. doi: 10.1061/(ASCE)EE.1943-7870.0001441
[41] TEPE O, TUNÇ Z, YıLDıZ B, et al. Efficient removal of paracetamol by manganese oxide octahedral molecular sieves (OMS-2) and persulfate [J]. Water, Air, & Soil Pollution, 2020, 231(5): 1-15.
[42] ZHU S S, LI X J, KANG J, et al. Persulfate activation on crystallographic manganese oxides: Mechanism of singlet oxygen evolution for nonradical selective degradation of aqueous contaminants [J]. Environmental Science & Technology, 2019, 53(1): 307-315.
[43] ZHU S S, HO S H, JIN C, et al. Nanostructured manganese oxides: Natural/artificial formation and their induced catalysis for wastewater remediation [J]. Environmental Science:Nano, 2020, 7(2): 368-396. doi: 10.1039/C9EN01250H
[44] YU L, ZHANG G, LIU C L, et al. Interface stabilization of undercoordinated iron centers on manganese oxides for nature-inspired peroxide activation [J]. ACS Catalysis, 2018, 8(2): 1090-1096. doi: 10.1021/acscatal.7b03338
[45] TIAN N, TIAN X K, NIE Y L, et al. Enhanced 2, 4-dichlorophenol degradation at pH 3-11 by peroxymonosulfate via controlling the reactive oxygen species over Ce substituted 3D Mn2O3 [J]. Chemical Engineering Journal, 2019, 355: 448-456. doi: 10.1016/j.cej.2018.08.183
[46] CHEN X Y, CHEN J W, QIAO X L, et al. Performance of nano-Co3O4/peroxymonosulfate system: Kinetics and mechanism study using Acid Orange 7 as a model compound [J]. Applied Catalysis B:Environmental, 2008, 80(1/2): 116-121.
[47] ANIPSITAKIS G P, DIONYSIOU D D. Radical generation by the interaction of transition metals with common oxidants [J]. Environmental Science & Technology, 2004, 38(13): 3705-3712.
[48] LIN K Y A, CHEN B J, CHEN C K. Evaluating Prussian blue analogues MII3[MIII(CN)6]2 (MII = Co, Cu, Fe, Mn, Ni;MIII = Co, Fe) as activators for peroxymonosulfate in water [J]. RSC Advances, 2016, 6(95): 92923-92933. doi: 10.1039/C6RA16011E
[49] LUO X S, BAI L M, XING J J, et al. Ordered mesoporous cobalt containing perovskite as a high-performance heterogeneous catalyst in activation of peroxymonosulfate [J]. ACS Applied Materials & Interfaces, 2019, 11(39): 35720-35728.
[50] YANG W C, LI X Y, JIANG Z, et al. Structure-dependent catalysis of Co3O4 crystals in persulfate activation via nonradical pathway [J]. Applied Surface Science, 2020, 525: 146482. doi: 10.1016/j.apsusc.2020.146482
[51] TATARCHUK T, SHYICHUK A, TRAWCZYŃSKA I, et al. Spinel cobalt(II) ferrite-chromites as catalysts for H2O2 decomposition: Synthesis, morphology, cation distribution and antistructure model of active centers formation [J]. Ceramics International, 2020, 46(17): 27517-27530. doi: 10.1016/j.ceramint.2020.07.243
[52] JIANG J L, JIA Z, HE Q, et al. Synergistic function of iron and cobalt in metallic glasses for highly improving persulfate activation in water treatment [J]. Journal of Alloys and Compounds, 2020, 822: 153574. doi: 10.1016/j.jallcom.2019.153574
[53] LUO L, WANG Y L, ZHU M L, et al. Co-Cu-Al layered double oxides as heterogeneous catalyst for enhanced degradation of organic pollutants in wastewater by activating peroxymonosulfate: Performance and synergistic effect [J]. Industrial & Engineering Chemistry Research, 2019, 58(20): 8699-8711.
[54] SUN B F, LI H L, LI X Y, et al. Degradation of organic dyes over Fenton-like Cu2O-Cu/C catalysts [J]. Industrial & Engineering Chemistry Research, 2018, 57(42): 14011-14021.
[55] SU Z, LI J, ZHANG D D, et al. Novel flexible Fenton-like catalyst: Unique CuO nanowires arrays on copper mesh with high efficiency across a wide pH range [J]. Science of the Total Environment, 2019, 647: 587-596. doi: 10.1016/j.scitotenv.2018.08.022
[56] ZHANG N Q, YI Y Q, LIAN J T, et al. Effects of Ce doping on the Fenton-like reactivity of Cu-based catalyst to the fluconazole [J]. Chemical Engineering Journal, 2020, 395: 124897. doi: 10.1016/j.cej.2020.124897
[57] ZHANG N Q, XUE C J, WANG K, et al. Efficient oxidative degradation of fluconazole by a heterogeneous Fenton process with Cu-V bimetallic catalysts [J]. Chemical Engineering Journal, 2020, 380: 122516. doi: 10.1016/j.cej.2019.122516
[58] CHEN T, ZHU Z L, ZHANG H, et al. Enhanced removal of veterinary antibiotic florfenicol by a Cu-based Fenton-like catalyst with wide pH adaptability and high efficiency [J]. ACS Omega, 2019, 4(1): 1982-1994. doi: 10.1021/acsomega.8b03406
[59] WANG J, LIU C, FENG J Y, et al. MOFs derived Co/Cu bimetallic nanoparticles embedded in graphitized carbon nanocubes as efficient Fenton catalysts [J]. Journal of Hazardous Materials, 2020, 394: 122567. doi: 10.1016/j.jhazmat.2020.122567
[60] BOKARE A D, CHOI W. Review of iron-free Fenton-like systems for activating H2O2 in advanced oxidation processes [J]. Journal of Hazardous Materials, 2014, 275: 121-135. doi: 10.1016/j.jhazmat.2014.04.054
[61] LYU L, ZHANG L L, HE G Z, et al. Selective H2O2 conversion to hydroxyl radicals in the electron-rich area of hydroxylated C-g-C3N4/CuCo–Al2O3 [J]. Journal of Materials Chemistry A, 2017, 5(15): 7153-7164. doi: 10.1039/C7TA01583F
[62] LEI Y, CHEN C S, TU Y J, et al. Heterogeneous degradation of organic pollutants by persulfate activated by CuO-Fe3O4: Mechanism, stability, and effects of pH and bicarbonate ions [J]. Environmental Science & Technology, 2015, 49(11): 6838-6845.
[63] JAWAD A, ZHAN K, WANG H B, et al. Tuning of persulfate activation from a free radical to a nonradical pathway through the incorporation of non-redox magnesium oxide [J]. Environmental Science & Technology, 2020, 54(4): 2476-2488.
[64] BELLO M M, RAMAN A A A, ASGHAR A. Activated carbon as carrier in fluidized bed reactor for Fenton oxidation of recalcitrant dye: Oxidation-adsorption synergy and surface interaction [J]. Journal of Water Process Engineering, 2020, 33: 101001. doi: 10.1016/j.jwpe.2019.101001
[65] BOUNAB L, IGLESIAS O, GONZÁLEZ-ROMERO E, et al. Effective heterogeneous electro-Fenton process of m-cresol with iron loaded actived carbon [J]. RSC Advances, 2015, 5(39): 31049-31056. doi: 10.1039/C5RA03050A
[66] WANG Y J, ZHAO G H, CHAI S N, et al. Three-dimensional homogeneous ferrite-carbon aerogel: One pot fabrication and enhanced electro-Fenton reactivity [J]. ACS Applied Materials & Interfaces, 2013, 5(3): 842-852.
[67] YAO T J, JIA W J, FENG Y, et al. Preparation of reduced graphene oxide nanosheet/FexOy/nitrogen-doped carbon layer aerogel as photo-Fenton catalyst with enhanced degradation activity and reusability [J]. Journal of Hazardous Materials, 2019, 362: 62-71. doi: 10.1016/j.jhazmat.2018.08.084
[68] CHEN Y, YANG Z, LIU Y B, et al. Fenton-like degradation of sulfamerazine at nearly neutral pH using Fe-Cu-CNTs and Al0-CNTs for in situ generation of H2O2/OH/O2− [J]. Chemical Engineering Journal, 2020, 396: 125329. doi: 10.1016/j.cej.2020.125329
[69] LIU B M, SONG W B, WU H X, et al. Degradation of norfloxacin with peroxymonosulfate activated by nanoconfinement Co3O4@CNT nanocomposite [J]. Chemical Engineering Journal, 2020, 398: 125498. doi: 10.1016/j.cej.2020.125498
[70] YANG Z C, QIAN J S, YU A Q, et al. Singlet oxygen mediated iron-based Fenton-like catalysis under nanoconfinement [J]. PNAS, 2019, 116(14): 6659-6664. doi: 10.1073/pnas.1819382116
[71] BENZAQUÉN T B, OCHOA RODRIGUEZ P A, CÁNEPA A L, et al. Heterogeneous Fenton reaction for the treatment of ACE in residual waters of pharmacological origin using Fe-SBA-15 nanocomposites [J]. Molecular Catalysis, 2020, 481: 110239. doi: 10.1016/j.mcat.2018.11.010
[72] BENZAQUÉN T B, BARRERA D A, CARRARO P M, et al. Nanostructured catalysts applied to degrade atrazine in aqueous phase by heterogeneous photo-Fenton process [J]. Environmental Science and Pollution Research, 2019, 26(5): 4192-4201. doi: 10.1007/s11356-018-2348-9
[73] MAZILU I, CIOTONEA C, CHIRIEAC A, et al. Synthesis of highly dispersed iron species within mesoporous (Al-)SBA-15 silica as efficient heterogeneous Fenton-type catalysts [J]. Microporous and Mesoporous Materials, 2017, 241: 326-337. doi: 10.1016/j.micromeso.2016.12.024
[74] YIN Y, SHI L, LI W L, et al. Boosting Fenton-like reactions via single atom Fe catalysis [J]. Environmental Science & Technology, 2019, 53(19): 11391-11400.
[75] SUN X W, XU D Y, DAI P, et al. Efficient degradation of methyl orange in water via both radical and non-radical pathways using Fe-Co bimetal-doped MCM-41 as peroxymonosulfate activator [J]. Chemical Engineering Journal, 2020, 402: 125881. doi: 10.1016/j.cej.2020.125881
[76] ROKHINA E V, LAHTINEN M, NOLTE M C M, et al. The influence of ultrasound on the RuI3-catalyzed oxidation of phenol: Catalyst study and experimental design [J]. Applied Catalysis B:Environmental, 2009, 87(3/4): 162-170.
[77] GHASEMI H, AGHABARARI B, ALIZADEH M, et al. High efficiency decolorization of wastewater by Fenton catalyst: Magnetic iron-copper hybrid oxides [J]. Journal of Water Process Engineering, 2020, 37: 101540. doi: 10.1016/j.jwpe.2020.101540
[78] LÁZARO-MARTÍNEZ J M, LOMBARDO LUPANO L V, PIEHL L L, et al. New insights about the selectivity in the activation of hydrogen peroxide by cobalt or copper hydrogel heterogeneous catalysts in the generation of reactive oxygen species [J]. The Journal of Physical Chemistry C, 2016, 120(51): 29332-29347. doi: 10.1021/acs.jpcc.6b10957
[79] ZHANG H, WU J, WANG Z Q, et al. Electrochemical oxidation of Crystal Violet in the presence of hydrogen peroxide [J]. Journal of Chemical Technology & Biotechnology, 2010, 85(11): 1436-1444.
[80] ZHANG T T, YANG Y L, LI X, et al. Degradation of sulfamethazine by persulfate activated with nanosized zero-valent copper in combination with ultrasonic irradiation [J]. Separation and Purification Technology, 2020, 239: 116537. doi: 10.1016/j.seppur.2020.116537
[81] WANG Q, CAO Y, ZENG H, et al. Ultrasound-enhanced zero-valent copper activation of persulfate for the degradation of bisphenol AF [J]. Chemical Engineering Journal, 2019, 378: 122143. doi: 10.1016/j.cej.2019.122143
[82] MANICKAM-PERIYARAMAN P, ESPINOSA J C, FERRER B, et al. Bimetallic iron-copper oxide nanoparticles supported on nanometric diamond as efficient and stable sunlight-assisted Fenton photocatalyst [J]. Chemical Engineering Journal, 2020, 393: 124770. doi: 10.1016/j.cej.2020.124770