[1] 张晓蕾. 对antibiotics由抗菌素到抗生素之分析 [J]. 临床医药文献电子杂志, 2014, 1(11): 2061-2062. ZHANG X L. Analysis of antibiotics from antimicrobial to antibiotics [J]. Journal of Clinical Medical Literature, 2014, 1(11): 2061-2062(in Chinese).
[2] 廖洋, 鲁金凤, 曹轶群, 等. 光催化降解对抗生素藻类毒性效应影响研究进展 [J]. 环境化学, 2021, 40(1): 111-120. doi: 10.7524/j.issn.0254-6108.2019122404 LIAO Y, LU J F, CAO Y Q, et al. Research progress on the effects of photocatalytic degradation on the algae toxicity of antibiotics [J]. Environmental Chemistry, 2021, 40(1): 111-120(in Chinese). doi: 10.7524/j.issn.0254-6108.2019122404
[3] LACH J, STĘPNIAK L, OCIEPA-KUBICKA A. Antibiotics in the environment as one of the barriers to sustainable development [J]. Problemy Ekorozwoju, 2018, 13(1): 197-207.
[4] REINTHALER F F, POSCH J, FEIERL G, et al. Antibiotic resistance of E. coli in sewage and sludge [J]. Water Research, 2003, 37(8): 1685-1690. doi: 10.1016/S0043-1354(02)00569-9
[5] BEN Y J, FU C X, HU M, et al. Human health risk assessment of antibiotic resistance associated with antibiotic residues in the environment: A review [J]. Environmental Research, 2019, 169: 483-493. doi: 10.1016/j.envres.2018.11.040
[6] ANIKA T, NOMAN Z, FERDOUS M, et al. Time dependent screening of antibiotic residues in milk of antibiotics treated cows [J]. Journal of Advanced Veterinary and Animal Research, 2019, 6(4): 516. doi: 10.5455/javar.2019.f376
[7] CHEN J, YING G G, DENG W J. Antibiotic residues in food: Extraction, analysis, and human health concerns [J]. Journal of Agricultural and Food Chemistry, 2019, 67(27): 7569-7586. doi: 10.1021/acs.jafc.9b01334
[8] BERGERON S, RAJ B, NATHANIEL R, et al. Presence of antibiotic resistance genes in raw source water of a drinking water treatment plant in a rural community of USA [J]. International Biodeterioration & Biodegradation, 2017, 124: 3-9.
[9] CHEN C Q, LI J, CHEN P P, et al. Occurrence of antibiotics and antibiotic resistances in soils from wastewater irrigation areas in Beijing and Tianjin, China [J]. Environmental Pollution, 2014, 193: 94-101. doi: 10.1016/j.envpol.2014.06.005
[10] ASHBOLT N J, AMÉZQUITA A, BACKHAUS T, et al. Human Health Risk Assessment (HHRA) for environmental development and transfer of antibiotic resistance [J]. Environmental Health Perspectives, 2013, 121(9): 993-1001. doi: 10.1289/ehp.1206316
[11] CABANILLAS A G, CáCERES M I R, CAñAS M A Met al. Square wave adsorptive stripping voltametric determination of the mixture of nalidixic acid and its main metabolite (7-hydroxymethylnalidixic acid) by multivariate methods and artificial neural network [J]. Talanta, 2007, 72(3): 932-940. doi: 10.1016/j.talanta.2006.12.035
[12] RODRIGUEZ-NARVAEZ O M, PERALTA-HERNANDEZ J M, GOONETILLEKE A, et al. Treatment technologies for emerging contaminants in water: A review [J]. Chemical Engineering Journal, 2017, 323: 361-380. doi: 10.1016/j.cej.2017.04.106
[13] SUN Y Q, CHO D W, GRAHAM N J D, et al. Degradation of antibiotics by modified vacuum-UV based processes: Mechanistic consequences of H2O2 and K2S2O8 in the presence of halide ions [J]. Science of the Total Environment, 2019, 664: 312-321. doi: 10.1016/j.scitotenv.2019.02.006
[14] BENNEMLA M, CHABANI M, AMRANE A. Photocatalytic degradation of oxytetracycline in aqueous solutions with TiO2 in suspension and prediction by artificial neural networks [J]. International Journal of Chemical Kinetics, 2016, 48(8): 464-473. doi: 10.1002/kin.21005
[15] BAALOUDJ O, NASRALLAH N, KEBIR M, et al. Artificial neural network modeling of cefixime photodegradation by synthesized CoBi2O4 nanoparticles [J]. Environmental Science and Pollution Research, 2021, 28(12): 15436-15452. doi: 10.1007/s11356-020-11716-w
[16] PHOON B L, ONG C C, MOHAMED SAHEED M S, et al. Conventional and emerging technologies for removal of antibiotics from wastewater [J]. Journal of Hazardous Materials, 2020, 400: 122961. doi: 10.1016/j.jhazmat.2020.122961
[17] LV H, TANG H Y. Machine learning methods and their application research[C]//2011 2nd International Symposium on Intelligence Information Processing and Trusted Computing. October 22-23, 2011, Wuhan, China. IEEE, 2011: 108-110.
[18] WANG L D, ALEXANDER C A. Machine learning in big data [J]. International Journal of Mathematical, Engineering and Management Sciences, 2016, 1(2): 52-61. doi: 10.33889/IJMEMS.2016.1.2-006
[19] DASH S S, NAYAK S K, MISHRA D. A review on machine learning algorithms[M]//Smart Innovation, Systems and Technologies. Singapore: Springer Singapore, 2020: 495-507.
[20] MA J, DING Y X, CHENG J C P, et al. A Lag-FLSTM deep learning network based on Bayesian Optimization for multi-sequential-variant PM2.5 prediction [J]. Sustainable Cities and Society, 2020, 60: 102237. doi: 10.1016/j.scs.2020.102237
[21] DELAVAR M, GHOLAMI A, SHIRAN G, et al. A novel method for improving air pollution prediction based on machine learning approaches: A case study applied to the capital city of Tehran [J]. ISPRS International Journal of Geo-Information, 2019, 8(2): 99. doi: 10.3390/ijgi8020099
[22] DIDELOT X, POUWELS K B. Machine-learning-assisted selection of antibiotic prescription [J]. Nature Medicine, 2019, 25(7): 1033-1034. doi: 10.1038/s41591-019-0517-0
[23] UYSAL CILOGLU F, SARIDAG A M, KILIC I H, et al. Identification of methicillin-resistant Staphylococcus aureus bacteria using surface-enhanced Raman spectroscopy and machine learning techniques [J]. The Analyst, 2020, 145(23): 7559-7570. doi: 10.1039/D0AN00476F
[24] ZHONG Y S, NI Y N, KOKOT S. Application of differential pulse stripping voltammetry and chemometrics for the determination of three antibiotic drugs in food samples [J]. Chinese Chemical Letters, 2012, 23(3): 339-342. doi: 10.1016/j.cclet.2012.01.007
[25] ZENG K, WEI W, JIANG L, et al. Use of carbon nanotubes as a solid support to establish quantitative (centrifugation) and qualitative (filtration) immunoassays to detect gentamicin contamination in commercial milk [J]. Journal of Agricultural and Food Chemistry, 2016, 64(41): 7874-7881. doi: 10.1021/acs.jafc.6b03332
[26] YEHIA A M, ELBALKINY H T, RIAD S M, et al. Chemometrics for resolving spectral data of cephalosporines and tracing their residue in waste water samples [J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy, 2019, 219: 436-443. doi: 10.1016/j.saa.2019.04.081
[27] LONG Y, LI B, LIU H. Analysis of fluoroquinolones antibiotic residue in feed matrices using terahertz spectroscopy [J]. Applied Optics, 2018, 57(3): 544-550. doi: 10.1364/AO.57.000544
[28] URAPEN R, MASAWAT P. Novel method for the determination of tetracycline antibiotics in bovine milk based on digital-image-based colorimetry [J]. International Dairy Journal, 2015, 44: 1-5. doi: 10.1016/j.idairyj.2014.12.002
[29] ASADOLLAHI-BABOLI M, MANI-VARNOSFADERANI A. Rapid and simultaneous determination of tetracycline and cefixime antibiotics by mean of gold nanoparticles-screen printed gold electrode and chemometrics tools [J]. Measurement, 2014, 47: 145-149. doi: 10.1016/j.measurement.2013.08.029
[30] XU Z J, WANG Z K, LIU M Y, et al. Machine learning assisted dual-channel carbon quantum dots-based fluorescence sensor array for detection of tetracyclines [J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy, 2020, 232: 118147. doi: 10.1016/j.saa.2020.118147
[31] ATTIA K A M, NASSAR M W I, EL-ZEINY M B, et al. Effect of genetic algorithm as a variable selection method on different chemometric models applied for the analysis of binary mixture of amoxicillin and flucloxacillin: A comparative study [J]. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 2016, 156: 54-62. doi: 10.1016/j.saa.2015.11.024
[32] DING W, ZHANG Y, KOU L P, et al. Electronic nose application for the determination of penicillin G in Saanen goat milk with fisher discriminate and multilayer perceptron neural network analyses [J]. Journal of Food Processing and Preservation, 2015, 39(6): 927-932. doi: 10.1111/jfpp.12305
[33] ZHAO L Z, DOU Y, GUO Y, et al. Artificial neural networks for non-destructive determination of acetylspiramycin powder by short-wavelength NIR spectroscopy [J]. Vibrational Spectroscopy, 2008, 47(1): 21-25. doi: 10.1016/j.vibspec.2008.01.007
[34] MORALES R, ORTIZ M C, SARABIA L A, et al. D-optimal designs and N-way techniques to determine sulfathiazole in milk by molecular fluorescence spectroscopy [J]. Analytica Chimica Acta, 2011, 707(1/2): 38-46.
[35] MARTÍNEZ J L. Antibiotics and antibiotic resistance genes in natural environments [J]. Science, 2008, 321(5887): 365-367. doi: 10.1126/science.1159483
[36] SINGH R, SINGH A P, KUMAR S, et al. Antibiotic resistance in major rivers in the world: A systematic review on occurrence, emergence, and management strategies [J]. Journal of Cleaner Production, 2019, 234: 1484-1505. doi: 10.1016/j.jclepro.2019.06.243
[37] VELTRI D, KAMATH U, SHEHU A. Deep learning improves antimicrobial peptide recognition [J]. Bioinformatics, 2018, 34(16): 2740-2747. doi: 10.1093/bioinformatics/bty179
[38] 吴甜甜, 杨洁. 天然抗菌肽的研究进展及应用前景 [J]. 生物技术通报, 2009(1): 27-30. WU T T, YANG J. Progress in investigation of natural antimicrobial peptides and application prospect [J]. Biotechnology Bulletin, 2009(1): 27-30(in Chinese).
[39] MAGANA M, PUSHPANATHAN M, SANTOS A L, et al. The value of antimicrobial peptides in the age of resistance [J]. The Lancet Infectious Diseases, 2020, 20(9): e216-e230. doi: 10.1016/S1473-3099(20)30327-3
[40] POORINMOHAMMAD N, HAMEDI J, MOGHADDAM M H A M. Sequence-based analysis and prediction of lantibiotics: A machine learning approach [J]. Computational Biology and Chemistry, 2018, 77: 199-206. doi: 10.1016/j.compbiolchem.2018.10.004
[41] FJELL C D, JENSSEN H, HILPERT K, et al. Identification of novel antibacterial peptides by chemoinformatics and machine learning [J]. Journal of Medicinal Chemistry, 2009, 52(7): 2006-2015. doi: 10.1021/jm8015365
[42] SU X, XU J, YIN Y B, et al. Antimicrobial peptide identification using multi-scale convolutional network [J]. BMC Bioinformatics, 2019, 20(1): 730. doi: 10.1186/s12859-019-3327-y
[43] LATA S, SHARMA B, RAGHAVA G. Analysis and prediction of antibacterial peptides [J]. BMC Bioinformatics, 2007, 8(1): 1-10. doi: 10.1186/1471-2105-8-1
[44] IRIYA R, JING W W, SYAL K, et al. Rapid antibiotic susceptibility testing based on bacterial motion patterns with long short- term memory neural networks [J]. IEEE Sensors Journal, 2020, 20(9): 4940-4950. doi: 10.1109/JSEN.2020.2967058
[45] GULL S, SHAMIM N, MINHAS F. AMAP: Hierarchical multi-label prediction of biologically active and antimicrobial peptides [J]. Computers in Biology and Medicine, 2019, 107: 172-181. doi: 10.1016/j.compbiomed.2019.02.018
[46] WHITE C, ISMAIL H D, SAIGO H, et al. CNN-BLPred: a Convolutional neural network based predictor for β-Lactamases (BL) and their classes [J]. BMC Bioinformatics, 2017, 18(16): 221-232.
[47] HAMID M N, FRIEDBERG I. Identifying antimicrobial peptides using word embedding with deep recurrent neural networks [J]. Bioinformatics, 2019, 35(12): 2009-2016. doi: 10.1093/bioinformatics/bty937
[48] STOKES J M, YANG K, SWANSON K, et al. A deep learning approach to antibiotic discovery [J]. Cell, 2020, 180(4): 688-702.e13. doi: 10.1016/j.cell.2020.01.021
[49] ZOFFMANN S, VERCRUYSSE M, BENMANSOUR F, et al. Machine learning-powered antibiotics phenotypic drug discovery [J]. Scientific Reports, 2019, 9: 5013. doi: 10.1038/s41598-019-39387-9
[50] KOHANSKI M A, DWYER D J, COLLINS J J. How antibiotics kill bacteria: From targets to networks [J]. Nature Reviews Microbiology, 2010, 8(6): 423-435. doi: 10.1038/nrmicro2333
[51] LEE M W, de ANDA J, KROLL C, et al. How do cyclic antibiotics with activity against Gram-negative bacteria permeate membranes?A machine learning informed experimental study [J]. Biochimica et Biophysica Acta (BBA) - Biomembranes, 2020, 1862(8): 183302. doi: 10.1016/j.bbamem.2020.183302
[52] LU X Q, WANG L, de LIU H, et al. Studies on the interaction between antibiotics and DNA [J]. Talanta, 2007, 73(3): 444-450. doi: 10.1016/j.talanta.2007.04.006
[53] BROWN C, TSENG D, LARKIN P M K, et al. Automated, cost-effective optical system for accelerated antimicrobial susceptibility testing (AST) using deep learning [J]. ACS Photonics, 2020, 7(9): 2527-2538. doi: 10.1021/acsphotonics.0c00841
[54] YANG J H, WRIGHT S N, HAMBLIN M, et al. A white-box machine learning approach for revealing antibiotic mechanisms of action [J]. Cell, 2019, 177(6): 1649-1661.e9. doi: 10.1016/j.cell.2019.04.016
[55] NIELSEN J. Antibiotic lethality is impacted by nutrient availabilities: New insights from machine learning [J]. Cell, 2019, 177(6): 1373-1374. doi: 10.1016/j.cell.2019.05.015
[56] BUDAK F, ÜBEYLI E D. Detection of resistivity for antibiotics by probabilistic neural networks [J]. Journal of Medical Systems, 2011, 35(1): 87-91. doi: 10.1007/s10916-009-9344-z
[57] BINH V N, DANG N, ANH N T K, et al. Antibiotics in the aquatic environment of Vietnam: Sources, concentrations, risk and control strategy [J]. Chemosphere, 2018, 197: 438-450. doi: 10.1016/j.chemosphere.2018.01.061
[58] WANG Q, ZHAO W M. Optical methods of antibiotic residues detections: A comprehensive review [J]. Sensors and Actuators B:Chemical, 2018, 269: 238-256.
[59] ZHOU J W, XU Z H, CHEN S W. Simulation and prediction of the thuringiensin abiotic degradation processes in aqueous solution by a radius basis function neural network model [J]. Chemosphere, 2013, 91(4): 442-447. doi: 10.1016/j.chemosphere.2012.11.062
[60] ZHU X Z, WAN Z H, TSANG D C W, et al. Machine learning for the selection of carbon-based materials for tetracycline and sulfamethoxazole adsorption [J]. Chemical Engineering Journal, 2021, 406: 126782. doi: 10.1016/j.cej.2020.126782
[61] FOROUGHI M, AHMADI AZQHANDI M H, KAKHKI S. Bio-inspired, high, and fast adsorption of tetracycline from aqueous media using Fe3O4-g-CN@PEI-β-CD nanocomposite: Modeling by response surface methodology (RSM), boosted regression tree (BRT), and general regression neural network (GRNN) [J]. Journal of Hazardous Materials, 2020, 388: 121769. doi: 10.1016/j.jhazmat.2019.121769
[62] TABATABAI-YAZDI F S, EBRAHIMIAN PIRBAZARI A, ESMAEILI KHALILSARAEI F, et al. Photocatalytic treatment of tetracycline antibiotic wastewater by silver/TiO 2 nanosheets/reduced graphene oxide and artificial neural network modeling [J]. Water Environment Research, 2020, 92(5): 662-676. doi: 10.1002/wer.1258
[63] TALWAR S, VERMA A K, SANGAL V K. Modeling and optimization of fixed mode dual effect (photocatalysis and photo-Fenton) assisted Metronidazole degradation using ANN coupled with genetic algorithm [J]. Journal of Environmental Management, 2019, 250: 109428. doi: 10.1016/j.jenvman.2019.109428
[64] DONUT N, CAVAS L. Artificial neural network modeling of tetracycline biosorption by pre-treated Posidonia oceanic [J]. Turkish Journal of Fisheries and Aquatic Sciences, 2017, 17(6): 1317-1333.
[65] ALAVI N, SARMADI K, GOUDARZI G, et al. Attenuation of tetracyclines during chicken manure and bagasse co-composting: Degradation, kinetics, and artificial neural network modeling [J]. Journal of Environmental Management, 2019, 231: 1203-1210. doi: 10.1016/j.jenvman.2018.11.003
[66] JAMALI ALYANI S, EBRAHIMIAN PIRBAZARI A, ESMAEILI KHALILSARAEI F, et al. Growing Co-doped TiO2 nanosheets on reduced graphene oxide for efficient photocatalytic removal of tetracycline antibiotic from aqueous solution and modeling the process by artificial neural network [J]. Journal of Alloys and Compounds, 2019, 799: 169-182. doi: 10.1016/j.jallcom.2019.05.175
[67] TALWAR S, SANGAL V K, VERMA A, et al. Modeling, optimization and kinetic study for photocatalytic treatment of ornidazole using slurry and fixed-bed approach [J]. Arabian Journal for Science and Engineering, 2018, 43(11): 6191-6202. doi: 10.1007/s13369-018-3388-7
[68] YURTSEVER U, CAN DOĞAN E, GENÇ N. The use of output-dependent data scaling with artificial neural networks and multilinear regression for modeling of ciprofloxacin removal from aqueous solution [J]. Journal of Water Reuse and Desalination, 2017, 7(1): 25-36. doi: 10.2166/wrd.2016.099
[69] OLADIPO A A, ABUREESH M A, GAZI M. Bifunctional composite from spent “Cyprus coffee” for tetracycline removal and phenol degradation: Solar-Fenton process and artificial neural network [J]. International Journal of Biological Macromolecules, 2016, 90: 89-99. doi: 10.1016/j.ijbiomac.2015.08.054
[70] PELALAK R, ALIZADEH R, GHARESHABANI E, et al. Degradation of sulfonamide antibiotics using ozone-based advanced oxidation process: Experimental, modeling, transformation mechanism and DFT study [J]. Science of the Total Environment, 2020, 734: 139446. doi: 10.1016/j.scitotenv.2020.139446
[71] SAMADI-MAYBODI A, NIKOU M. Removal of sarafloxacin from aqueous solution by a magnetized metal-organic framework;Artificial neural network modeling [J]. Polyhedron, 2020, 179: 114342. doi: 10.1016/j.poly.2019.114342
[72] CHOWDHURY S, HALDER G, MANDAL T, et al. Cetylpyridinium bromide assisted micellar-enhanced ultrafiltration for treating enrofloxacin-laden water [J]. Science of the Total Environment, 2019, 687: 10-23. doi: 10.1016/j.scitotenv.2019.06.074
[73] CHOWDHURY S, SIKDER J, MANDAL T, et al. Comprehensive analysis on sorptive uptake of enrofloxacin by activated carbon derived from industrial paper sludge [J]. Science of the Total Environment, 2019, 665: 438-452. doi: 10.1016/j.scitotenv.2019.02.081
[74] YABALAK E. Degradation of ticarcillin by subcritical water oxidation method: Application of response surface methodology and artificial neural network modeling [J]. Journal of Environmental Science and Health, Part A, 2018, 53(11): 975-985. doi: 10.1080/10934529.2018.1471023
[75] SINGH K P, SINGH A K, GUPTA S, et al. Modeling and optimization of reductive degradation of chloramphenicol in aqueous solution by zero-valent bimetallic nanoparticles [J]. Environmental Science and Pollution Research, 2012, 19(6): 2063-2078. doi: 10.1007/s11356-011-0700-4
[76] HUANG B, WANG H C, CUI D, et al. Treatment of pharmaceutical wastewater containing β-lactams antibiotics by a pilot-scale anaerobic membrane bioreactor (AnMBR) [J]. Chemical Engineering Journal, 2018, 341: 238-247. doi: 10.1016/j.cej.2018.01.149
[77] ZHOU C Z, WANG Q, ZHOU C Y. Photocatalytic degradation of antibiotics by molecular assembly porous carbon nitride: Activity studies and artificial neural networks modeling [J]. Chemical Physics Letters, 2020, 750: 137479. doi: 10.1016/j.cplett.2020.137479
[78] HU D X, MIN H C, CHEN Z B, et al. Performance improvement and model of a bio-electrochemical system built-in up-flow anaerobic sludge blanket for treating β-lactams pharmaceutical wastewater under different hydraulic retention time [J]. Water Research, 2019, 164: 114915. doi: 10.1016/j.watres.2019.114915