[1] |
LELIEVELD J, EVANS J S, FNAIS M, et al. The contribution of outdoor air pollution sources to premature mortality on a global scale[J]. Nature, 2015, 525(7569): 367-371. doi: 10.1038/nature15371
|
[2] |
HE Q, GUO W, ZHANG G, et al. Characteristics and seasonal variations of carbonaceous species in PM2.5 in Taiyuan, China[J]. Atmosphere, 2015, 6(6): 850-862. doi: 10.3390/atmos6060850
|
[3] |
FENG Y, CHEN Y, GUO H, et al. Characteristics of organic and elemental carbon in PM2.5 samples in Shanghai, China[J]. Atmospheric Research, 2009, 92(4): 434-442. doi: 10.1016/j.atmosres.2009.01.003
|
[4] |
NIU Z, ZHANG F, CHEN J, et al. Carbonaceous species in PM2.5 in the coastal urban agglomeration in the Western Taiwan Strait Region, China[J]. Atmospheric Research, 2013, 122: 102-110. doi: 10.1016/j.atmosres.2012.11.002
|
[5] |
SUDHEER A K, ASLAM M Y, UPADHYAY M, et al. Carbonaceous aerosol over semi-arid region of western India: Heterogeneity in sources and characteristics[J]. Atmospheric Research, 2016, 178-179: 268-278. doi: 10.1016/j.atmosres.2016.03.026
|
[6] |
曹夏, 周变红, 王锦, 等. 西安城区黑碳气溶胶的污染特征及来源解析[J]. 环境化学, 2020, 39(11): 3072-3082.
|
[7] |
RICHMOND-BRYANT J, SAGANICH C, BUKIEWICZ L, et al. Associations of PM2.5 and black carbon concentrations with traffic, idling, background pollution, and meteorology during school dismissals[J]. Science of the Total Environment, 2009, 407(10): 3357-3364. doi: 10.1016/j.scitotenv.2009.01.046
|
[8] |
LIAO H, CHANG W. Integrated assessment of air quality and climate change for policy-making: Highlights of IPCC AR5 and research challenges[J]. National Science Review, 2014, 1(2): 176-179. doi: 10.1093/nsr/nwu005
|
[9] |
LIU D, VONWILLER M, LI J, et al. Fossil and non-fossil fuel sources of organic and elemental carbonaceous aerosol in Beijing, Shanghai, and Guangzhou: Seasonal carbon source variation[J]. Aerosol and Air Quality Research, 2020, 20(11): 2495-2506. doi: 10.4209/aaqr.2019.12.0642
|
[10] |
牟臻, 陈庆彩, 王羽琴, 等. 西安市PM2.5中碳质气溶胶污染特征[J]. 环境科学, 2019, 40(4): 1529-1536.
|
[11] |
叶招莲, 刘佳澍, 李清, 等. 常州夏秋季PM2.5中碳质气溶胶特征及来源[J]. 环境科学, 2017, 38(11): 4469-4477.
|
[12] |
WEBER R J, SULLIVAN A P, PELTIER R E, et al. A study of secondary organic aerosol formation in the anthropogenic-influenced southeastern United States[J]. Journal of Geophysical Research:Atmospheres, 2007, 112(D13): 1-7.
|
[13] |
PUN V C, HO K F. Blood pressure and pulmonary health effects of ozone and black carbon exposure in young adult runners[J]. Science of the Total Environment, 2019, 657: 1-6. doi: 10.1016/j.scitotenv.2018.11.465
|
[14] |
PEHNEC G, JAKOVLJEVIĆ I. Carcinogenic potency of airborne polycyclic aromatic hydrocarbons in relation to the particle fraction size[J]. International Journal of Environmental Research and Public Health, 2018, 15(11): 2485. doi: 10.3390/ijerph15112485
|
[15] |
KIM K H, JAHAN S A, KABIR E, et al. A review of airborne polycyclic aromatic hydrocarbons (PAHs) and their human health effects[J]. Environment International, 2013, 60: 71-80. doi: 10.1016/j.envint.2013.07.019
|
[16] |
FUNG K, CHOW J C, WATSON J G. Evaluation of OC/EC speciation by thermal manganese dioxide oxidation and the IMPROVE method[J]. Journal of the Air & Waste Management Association, 2002, 52(11): 1333-1341.
|
[17] |
BAE M S, SCHAUER J J, DEMINTER J T, et al. Validation of a semi-continuous instrument for elemental carbon and organic carbon using a thermal-optical method[J]. Atmospheric Environment, 2004, 38(18): 2885-2893. doi: 10.1016/j.atmosenv.2004.02.027
|
[18] |
PARK S S, BAE M S, SCHAUER J J, et al. Evaluation of the TMO and TOT methods for OC and EC measurements and their characteristics in PM2.5 at an urban site of Korea during ACE-Asia[J]. Atmospheric Environment, 2005, 39(28): 5101-5112. doi: 10.1016/j.atmosenv.2005.05.016
|
[19] |
CHENG Y, ZHENG M, HE K B, et al. Comparison of two thermal-optical methods for the determination of organic carbon and elemental carbon: Results from the southeastern United States[J]. Atmospheric Environment, 2011, 45(11): 1913-1918. doi: 10.1016/j.atmosenv.2011.01.036
|
[20] |
WU C, HUANG X H H, NG W M, et al. Inter-comparison of NIOSH and IMPROVE protocols for OC and EC determination: implications for inter-protocol data conversion[J]. Atmospheric Measurement Techniques, 2016, 9(9): 4547-4560. doi: 10.5194/amt-9-4547-2016
|
[21] |
KHAN B, HAYS M D, GERON C, et al. Differences in the OC/EC ratios that characterize ambient and source aerosols due to thermal-optical analysis[J]. Aerosol Science and Technology, 2012, 46(2): 127-137. doi: 10.1080/02786826.2011.609194
|
[22] |
BHAVE P V, KLEEMAN M J, ALLEN J O, et al. Evaluation of an air quality model for the size and composition of source-oriented particle classes[J]. Environmental Science & Technology, 2002, 36(10): 2154-2163.
|
[23] |
ALLEN J O, BHAVE P V, WHITEAKER J R, et al. Instrument busy time and mass measurement using aerosol time-of-flight mass spectrometry[J]. Aerosol Science and Technology, 2006, 40(8): 615-626. doi: 10.1080/02786820600754623
|
[24] |
LI L, HUANG Z, DONG J, et al. Real time bipolar time-of-flight mass spectrometer for analyzing single aerosol particles[J]. International Journal of Mass Spectrometry, 2011, 303(2): 118-124.
|
[25] |
张遥, 成春雷, 王在华, 等. 基于单颗粒气溶胶质谱仪的气溶胶化学组分的半定量研究[J]. 中山大学学报(自然科学版), 2022, 17(13): 1-3.
|
[26] |
DRINOVEC L, MOČNIK G, ZOTTER P, et al. The "dual-spot" Aethalometer: an improved measurement of aerosol black carbon with real-time loading compensation[J]. Atmospheric Measurement Techniques, 2015, 8(5): 1965-1979. doi: 10.5194/amt-8-1965-2015
|
[27] |
ELEFTHERIADIS K, VRATOLIS S, NYEKI S. Aerosol black carbon in the European Arctic: Measurements at Zeppelin station, Ny-Ålesund, Svalbard from 1998–2007[J]. Geophysical Research Letters, 2009, 36(2): 1-9.
|
[28] |
RIGLER M, DRINOVEC L, LAVRIČ G, et al. The new instrument using a TC-BC (total carbon-black carbon) method for the online measurement of carbonaceous aerosols[J]. Atmospheric Measurement Techniques, 2020, 13(8): 4333-4351. doi: 10.5194/amt-13-4333-2020
|
[29] |
RAJESH T A, RAMACHANDRAN S. Black carbon aerosol mass concentration, absorption and single scattering albedo from single and dual spot aethalometers: Radiative implications[J]. Journal of Aerosol Science, 2018, 119: 77-90. doi: 10.1016/j.jaerosci.2018.02.001
|
[30] |
YUS-DÍEZ J, BERNARDONI V, MOČNIK G, et al. Determination of the multiple-scattering correction factor and its cross-sensitivity to scattering and wavelength dependence for different AE33 Aethalometer filter tapes: A multi-instrumental approach[J]. Atmospheric Measurement Techniques, 2021, 14(10): 6335-6355. doi: 10.5194/amt-14-6335-2021
|
[31] |
RIGLER M, DRINOVEC L, FAVEZ O, et al. High time resolution measurement and source apportionment of TC, BC and OC, EC[C]//12 International Conference on Carbonaceous Particles in the Atmosphere (ICCPA). Vienne, Austria, 2019: 35.
|
[32] |
倪登峰, 林晶晶, 高健, 等. 碳质气溶胶(OC/EC)新型观测方法对比分析[J]. 中国环境科学, 2020, 40(12): 5191-5197.
|
[33] |
SANDRADEWI J, PRÉVÔT A S H, SZIDAT S, et al. Using aerosol light absorption measurements for the quantitative determination of wood burning and traffic emission contributions to particulate matter[J]. Environmental Science & Technology, 2008, 42(9): 3316-3323.
|
[34] |
SANDRADEWI J, PRÉVÔT A S H, WEINGARTNER E, et al. A study of wood burning and traffic aerosols in an Alpine valley using a multi-wavelength aethalometer[J]. Atmospheric Environment, 2008, 42(1): 101-112. doi: 10.1016/j.atmosenv.2007.09.034
|
[35] |
WU C, WU D, YU J Z. Quantifying black carbon light absorption enhancement with a novel statistical approach[J]. Atmospheric Chemistry and Physics, 2018, 18(1): 289-309. doi: 10.5194/acp-18-289-2018
|
[36] |
WANG Q, YE J, WANG Y, et al. Wintertime optical properties of primary and secondary brown carbon at a regional site in the North China Plain[J]. Environmental Science & Technology, 2019, 53(21): 12389-12397.
|
[37] |
PAVLOVIC J, KINSEY J S, HAYS M D. The influence of temperature calibration on the OC-EC results from a dual-optics thermal carbon analyzer[J]. Atmospheric Measurement Techniques, 2014, 7(9): 2829-2838. doi: 10.5194/amt-7-2829-2014
|
[38] |
MILLET D B, DONAHUE N M, PANDIS S N, et al. Atmospheric volatile organic compound measurements during the pittsburgh air quality study: Results, interpretation, and quantification of primary and secondary contributions[J]. Journal of Geophysical Research: Atmospheres, 2005, 110(D7): 1-17.
|
[39] |
ZACCANTI G, BRUSCAGLIONI P. Deviation from the lambert-beer law in the transmittance of a light beam through diffusing media: Experimental results[J]. Journal of Modern Optics, 1988, 35(2): 229-242. doi: 10.1080/09500348814550281
|
[40] |
BROWN S, MINOR H, O’BRIEN T, et al. Review of sunset OC/EC instrument measurements during the EPA’s sunset carbon evaluation project[J]. Atmosphere, 2019, 10(5): 287. doi: 10.3390/atmos10050287
|
[41] |
谢锋. 黑碳气溶胶的测量与溯源参数优化及其应用 [D]. 南京: 南京信息工程大学, 2021.
|
[42] |
肖思晗, 于兴娜, 朱彬, 等. 南京北郊黑碳气溶胶的来源解析[J]. 环境科学, 2018, 39(1): 9-17.
|
[43] |
鲍孟盈. 南京北郊工业区碳质气溶胶污染特征及生物质燃烧的影响研究[D]. 南京: 南京信息工程大学, 2017.
|
[44] |
沈嵩, 刘蕾, 温维, 等. 北京及周边地区夏季PM2.5中含碳组分污染特征与来源解析[J]. 环境工程, 2022, 40(2): 71-80.
|
[45] |
林宇, 姬亚芹, 林孜, 等. 天津市夏季PM2.5中碳组分时空变化特征及来源解析[J]. 环境化学, 2022, 41(1): 104-112.
|
[46] |
谢锋, 林煜棋, 宋文怀, 等. 南京北郊黑碳气溶胶分布特征及来源[J]. 环境科学, 2020, 41(10): 4392-4401.
|
[47] |
肖思晗. 南京北郊黑碳气溶胶的污染特征及其来源解析[D]. 南京: 南京信息工程大学, 2018.
|
[48] |
LIU Y, YAN C, ZHENG M. Source apportionment of black carbon during winter in Beijing[J]. Science of the Total Environment, 2018, 618(1): 531-541.
|
[49] |
吕任生, 贾尔恒·阿哈提, 赵晨曦, 等. 乌鲁木齐市城区机动车大气污染物排放特征[J]. 环境科学学报, 2015, 35(12): 4061-4070.
|
[50] |
宋晓伟, 郝永佩, 朱晓东. 长三角城市群机动车污染物排放清单建立及特征研究[J]. 环境科学学报, 2020, 40(1): 90-101.
|
[51] |
徐足飞, 曹芳, 高嵩, 等. 南京北郊秋季PM2.5碳质组分污染特征及来源分析[J]. 环境科学, 2018, 39(7): 3033-3041.
|
[52] |
LIAKAKOU E, KASKAOUTIS D, GRIVAS G, et al. Long-term brown carbon spectral characteristics in a Mediterranean city (Athens)[J]. Science of the Total Environment, 2020, 708(1): 135019.
|
[53] |
关东杰, 沈振兴, 陈庆彩. 棕碳气溶胶的生消机制研究进展[J]. 环境化学, 2020, 39(10): 2812-2822.
|
[54] |
RETAMA A, RAMOS-CERÓN M, RIVERA-HERNÁNDEZ O, et al. Aerosol optical properties and brown carbon in Mexico City[J]. Environmental Science:Atmospheres, 2022, 17(1): 1-23.
|