[1] |
CHAE Y, AN Y J. Current research trends on plastic pollution and ecological impacts on the soil ecosystem: A review [J]. Environmental Pollution, 2018, 240: 387-395. doi: 10.1016/j.envpol.2018.05.008
|
[2] |
GEYER R, JAMBECK J R, LAW K L. Production, use, and fate of all plastics ever made [J]. Science Advances, 2017, 3(7): e1700782. doi: 10.1126/sciadv.1700782
|
[3] |
LUO H W, LIU C Y, HE D Q, et al. Environmental behaviors of microplastics in aquatic systems: A systematic review on degradation, adsorption, toxicity and biofilm under aging conditions [J]. Journal of Hazardous Materials, 2022, 423: 126915. doi: 10.1016/j.jhazmat.2021.126915
|
[4] |
RICHARDSON S D, TERNES T A. Water analysis: Emerging contaminants and current issues [J]. Analytical Chemistry, 2014, 86(6): 2813-2848. doi: 10.1021/ac500508t
|
[5] |
LI J, SONG Y, CAI Y B. Focus topics on microplastics in soil: Analytical methods, occurrence, transport, and ecological risks [J]. Environmental Pollution, 2020, 257: 113570. doi: 10.1016/j.envpol.2019.113570
|
[6] |
NIZZETTO L, FUTTER M, LANGAAS S. Are agricultural soils dumps for microplastics of urban origin? [J]. Environmental Science & Technology, 2016, 50(20): 10777-10779.
|
[7] |
DUAN J J, BOLAN N, LI Y, et al. Weathering of microplastics and interaction with other coexisting constituents in terrestrial and aquatic environments [J]. Water Research, 2021, 196: 117011. doi: 10.1016/j.watres.2021.117011
|
[8] |
杨婧婧, 徐笠, 陆安祥, 等. 环境中微(纳米)塑料的来源及毒理学研究进展 [J]. 环境化学, 2018, 37(3): 383-396. doi: 10.7524/j.issn.0254-6108.2017071002
YANG J J, XU L, LU A X, et al. Research progress on the sources and toxicology of micro (nano) plastics in environment [J]. Environmental Chemistry, 2018, 37(3): 383-396(in Chinese). doi: 10.7524/j.issn.0254-6108.2017071002
|
[9] |
郝爱红, 赵保卫, 张建, 等. 土壤中微塑料污染现状及其生态风险研究进展 [J]. 环境化学, 2021, 40(4): 1100-1111. doi: 10.7524/j.issn.0254-6108.2020083102
HAO A H, ZHAO B W, ZHANG J, et al. Research progress on pollution status and ecological risk of microplastics in soil [J]. Environmental Chemistry, 2021, 40(4): 1100-1111(in Chinese). doi: 10.7524/j.issn.0254-6108.2020083102
|
[10] |
仇付国, 童诗雨, 王肖倩. 水环境中微塑料赋存现状及生态危害研究进展 [J]. 环境工程, 2022, 40(3): 221-228.
QIU F G, TONG S Y, WANG X Q. Research progress on occurrence status and ecological hazards of microplastics in water environment [J]. Environmental Engineering, 2022, 40(3): 221-228(in Chinese).
|
[11] |
SUN J, DAI X H, WANG Q L, et al. Microplastics in wastewater treatment plants: Detection, occurrence and removal [J]. Water Research, 2019, 152: 21-37. doi: 10.1016/j.watres.2018.12.050
|
[12] |
ROCHMAN C M. Microplastics research-from sink to source [J]. Science, 2018, 360(6384): 28-29. doi: 10.1126/science.aar7734
|
[13] |
ERIKSEN M, LEBRETON L C M, CARSON H S, et al. Plastic pollution in the world's oceans: More than 5 trillion plastic pieces weighing over 250, 000 tons afloat at sea [J]. PLoS One, 2014, 9(12): e111913. doi: 10.1371/journal.pone.0111913
|
[14] |
KOELMANS A A, MOHAMED NOR N H, HERMSEN E, et al. Microplastics in freshwaters and drinking water: Critical review and assessment of data quality [J]. Water Research, 2019, 155: 410-422. doi: 10.1016/j.watres.2019.02.054
|
[15] |
DENG Y, ZHANG Y, LEMOS B, et al. Tissue accumulation of microplastics in mice and biomarker responses suggest widespread health risks of exposure [J]. Scientific Reports, 2017, 7: 46687.
|
[16] |
CAPOLUPO M, SØRENSEN L, JAYASENA K D R, et al. Chemical composition and ecotoxicity of plastic and car tire rubber leachates to aquatic organisms [J]. Water Research, 2020, 169: 115270. doi: 10.1016/j.watres.2019.115270
|
[17] |
WARDROP P, SHIMETA J, NUGEGODA D, et al. Chemical pollutants sorbed to ingested microbeads from personal care products accumulate in fish [J]. Environmental Science & Technology, 2016, 50(7): 4037-4044.
|
[18] |
陈雅兰, 孙可, 高博. 微塑料吸附机制研究进展 [J]. 环境化学, 2021, 40(8): 2271-2287. doi: 10.7524/j.issn.0254-6108.2021031204
CHEN Y L, SUN K, GAO B. Sorption behavior, mechanisms, and models of organic pollutants and metals on microplastics: A review [J]. Environmental Chemistry, 2021, 40(8): 2271-2287(in Chinese). doi: 10.7524/j.issn.0254-6108.2021031204
|
[19] |
ALIMI O S, CLAVEAU-MALLET D, KURUSU R S, et al. Weathering pathways and protocols for environmentally relevant microplastics and nanoplastics: What are we missing? [J]. Journal of Hazardous Materials, 2022, 423: 126955. doi: 10.1016/j.jhazmat.2021.126955
|
[20] |
SUN Y R, YUAN J H, ZHOU T, et al. Laboratory simulation of microplastics weathering and its adsorption behaviors in an aqueous environment: A systematic review [J]. Environmental Pollution, 2020, 265: 114864. doi: 10.1016/j.envpol.2020.114864
|
[21] |
KELKAR V P, ROLSKY C B, PANT A, et al. Chemical and physical changes of microplastics during sterilization by chlorination [J]. Water Research, 2019, 163: 114871. doi: 10.1016/j.watres.2019.114871
|
[22] |
SONG Y K, HONG S H, JANG M, et al. Combined effects of UV exposure duration and mechanical abrasion on microplastic fragmentation by polymer type [J]. Environmental Science & Technology, 2017, 51(8): 4368-4376.
|
[23] |
WANG X, ZHENG H, ZHAO J, et al. Photodegradation elevated the toxicity of polystyrene microplastics to grouper (Epinephelus moara) through disrupting hepatic lipid homeostasis [J]. Environmental Science & Technology, 2020, 54(10): 6202-6212.
|
[24] |
LIU X L, GHARASOO M, SHI Y, et al. Key physicochemical properties dictating gastrointestinal bioaccessibility of microplastics-associated organic xenobiotics: Insights from a deep learning approach [J]. Environmental Science & Technology, 2020, 54(19): 12051-12062.
|
[25] |
LIU J, ZHANG T, TIAN L L, et al. Aging significantly affects mobility and contaminant-mobilizing ability of nanoplastics in saturated loamy sand [J]. Environmental Science & Technology, 2019, 53(10): 5805-5815.
|
[26] |
ENFRIN M, DUMÉE L F, LEE J. Nano/microplastics in water and wastewater treatment processes - Origin, impact and potential solutions [J]. Water Research, 2019, 161: 621-638. doi: 10.1016/j.watres.2019.06.049
|
[27] |
ENFRIN M, LEE J, GIBERT Y, et al. Release of hazardous nanoplastic contaminants due to microplastics fragmentation under shear stress forces [J]. Journal of Hazardous Materials, 2020, 384: 121393. doi: 10.1016/j.jhazmat.2019.121393
|
[28] |
CORCORAN P L, BIESINGER M C, GRIFI M. Plastics and beaches: A degrading relationship [J]. Marine Pollution Bulletin, 2009, 58(1): 80-84. doi: 10.1016/j.marpolbul.2008.08.022
|
[29] |
ANDRADY A L. Microplastics in the marine environment [J]. Marine Pollution Bulletin, 2011, 62(8): 1596-1605. doi: 10.1016/j.marpolbul.2011.05.030
|
[30] |
JULIENNE F, DELORME N, LAGARDE F. From macroplastics to microplastics: Role of water in the fragmentation of polyethylene [J]. Chemosphere, 2019, 236: 124409. doi: 10.1016/j.chemosphere.2019.124409
|
[31] |
WU X W, LIU P, SHI H H, et al. Photo aging and fragmentation of polypropylene food packaging materials in artificial seawater [J]. Water Research, 2021, 188: 116456. doi: 10.1016/j.watres.2020.116456
|
[32] |
MAO R F, LANG M F, YU X Q, et al. Aging mechanism of microplastics with UV irradiation and its effects on the adsorption of heavy metals [J]. Journal of Hazardous Materials, 2020, 393: 122515. doi: 10.1016/j.jhazmat.2020.122515
|
[33] |
ZHANG K, HAMIDIAN A H, TUBIĆ A, et al. Understanding plastic degradation and microplastic formation in the environment: A review [J]. Environmental Pollution, 2021, 274: 116554. doi: 10.1016/j.envpol.2021.116554
|
[34] |
SINGH B, SHARMA N. Mechanistic implications of plastic degradation [J]. Polymer Degradation and Stability, 2008, 93(3): 561-584. doi: 10.1016/j.polymdegradstab.2007.11.008
|
[35] |
TIAN L L, CHEN Q Q, JIANG W, et al. A carbon-14 radiotracer-based study on the phototransformation of polystyrene nanoplastics in water versus in air [J]. Environmental Science:Nano, 2019, 6(9): 2907-2917. doi: 10.1039/C9EN00662A
|
[36] |
YOUSIF E, HADDAD R. Photodegradation and photostabilization of polymers, especially polystyrene: Review [J]. SpringerPlus, 2013, 2: 398. doi: 10.1186/2193-1801-2-398
|
[37] |
GEWERT B, PLASSMANN M M, MACLEOD M. Pathways for degradation of plastic polymers floating in the marine environment [J]. Environmental Science. Processes & Impacts, 2015, 17(9): 1513-1521.
|
[38] |
TYLER D R. Mechanistic aspects of the effects of stress on the rates of photochemical degradation reactions in polymers [J]. Journal of Macromolecular Science, Part C, 2004, 44(4): 351-388. doi: 10.1081/MC-200033682
|
[39] |
WARD C P, ARMSTRONG C J, WALSH A N, et al. Sunlight converts polystyrene to carbon dioxide and dissolved organic carbon [J]. Environmental Science & Technology Letters, 2019, 6(11): 669-674.
|
[40] |
TANG C C, CHEN H I, BRIMBLECOMBE P, et al. Morphology and chemical properties of polypropylene pellets degraded in simulated terrestrial and marine environments [J]. Marine Pollution Bulletin, 2019, 149: 110626. doi: 10.1016/j.marpolbul.2019.110626
|
[41] |
COPINET A, BERTRAND C, GOVINDIN S, et al. Effects of ultraviolet light (315 nm), temperature and relative humidity on the degradation of polylactic acid plastic films [J]. Chemosphere, 2004, 55(5): 763-773. doi: 10.1016/j.chemosphere.2003.11.038
|
[42] |
HESHMATI M, HAGHANI R, AL-EMRANI M. Durability of CFRP/steel joints under cyclic wet-dry and freeze-thaw conditions [J]. Composites Part B:Engineering, 2017, 126: 211-226. doi: 10.1016/j.compositesb.2017.06.011
|
[43] |
ZHAO M T, ZHANG T, YANG X L, et al. Sulfide induces physical damages and chemical transformation of microplastics via radical oxidation and sulfide addition [J]. Water Research, 2021, 197: 117100. doi: 10.1016/j.watres.2021.117100
|
[44] |
YIN L J, ZHOU H X, LIAN L S, et al. Effects of C60 on the photochemical formation of reactive oxygen species from natural organic matter [J]. Environmental Science & Technology, 2016, 50(21): 11742-11751.
|
[45] |
LIU P, QIAN L, WANG H Y, et al. New insights into the aging behavior of microplastics accelerated by advanced oxidation processes [J]. Environmental Science & Technology, 2019, 53(7): 3579-3588.
|
[46] |
ZHU K C, JIA H Z, SUN Y J, et al. Long-term phototransformation of microplastics under simulated sunlight irradiation in aquatic environments: Roles of reactive oxygen species [J]. Water Research, 2020, 173: 115564. doi: 10.1016/j.watres.2020.115564
|
[47] |
KENT R D, OSER J G, VIKESLAND P J. Controlled evaluation of silver nanoparticle sulfidation in a full-scale wastewater treatment plant [J]. Environmental Science & Technology, 2014, 48(15): 8564-8572.
|
[48] |
RICKARD D, LUTHER G W I. Chemistry of iron sulfides [J]. ChemInform, 2007, 107(19): 514-562.
|
[49] |
NIU L H, LI Y Y, LI Y, et al. New insights into the vertical distribution and microbial degradation of microplastics in urban river sediments [J]. Water Research, 2021, 188: 116449. doi: 10.1016/j.watres.2020.116449
|
[50] |
BRANDON J A, JONES W, OHMAN M D. Multidecadal increase in plastic particles in coastal ocean sediments [J]. Science Advances, 2019, 5(9): eaax0587. doi: 10.1126/sciadv.aax0587
|
[51] |
TAPLEY D W, BUETTNER G R, SHICK J M. Free radicals and chemiluminescence as products of the spontaneous oxidation of sulfide in seawater, and their biological implications [J]. The Biological Bulletin, 1999, 196(1): 52-56. doi: 10.2307/1543166
|
[52] |
CHEN K Y, MORRIS J C. Kinetics of oxidation of aqueous sulfide by oxygen [J]. Environmental Science & Technology, 1972, 6(6): 529-537.
|
[53] |
LOMBARDO S M, VINDEDAHL A M, ARNOLD W A. Determination of hydroxyl radical production from sulfide oxidation relevant to sulfidic porewaters [J]. ACS Earth and Space Chemistry, 2020, 4(2): 261-271. doi: 10.1021/acsearthspacechem.9b00297
|
[54] |
LI X W, LI M, MEI Q Q, et al. Aging microplastics in wastewater pipeline networks and treatment processes: Physicochemical characteristics and Cd adsorption [J]. Science of the Total Environment, 2021, 797: 148940. doi: 10.1016/j.scitotenv.2021.148940
|
[55] |
FRANCOIS R. A study of sulphur enrichment in the humic fraction of marine sediments during early diagenesis [J]. Geochimica et Cosmochimica Acta, 1987, 51(1): 17-27. doi: 10.1016/0016-7037(87)90003-2
|
[56] |
YU Z G, PEIFFER S, GÖTTLICHER J, et al. Electron transfer budgets and kinetics of abiotic oxidation and incorporation of aqueous sulfide by dissolved organic matter [J]. Environmental Science & Technology, 2015, 49(9): 5441-5449.
|
[57] |
PERLINGER J A, KALLURI V M, VENKATAPATHY R, et al. Addition of hydrogen sulfide to juglone [J]. Environmental Science & Technology, 2002, 36(12): 2663-2669.
|
[58] |
BUXTON G V, GREENSTOCK C L, HELMAN W P, et al. Critical Review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (·OH/·O− in Aqueous Solution [J]. Journal of Physical and Chemical Reference Data, 1988, 17(2): 513-886. doi: 10.1063/1.555805
|
[59] |
HUERTA LWANGA E, THAPA B, YANG X M, et al. Decay of low-density polyethylene by bacteria extracted from earthworm's guts: A potential for soil restoration [J]. Science of the Total Environment, 2018, 624: 753-757. doi: 10.1016/j.scitotenv.2017.12.144
|
[60] |
BHAGWAT G, TRAN T, LAMB D, et al. Biofilms enhance the adsorption of toxic contaminants on plastic microfibers under environmentally relevant conditions [J]. Environmental Science & Technology, 2021, 55(13): 8877-8887.
|
[61] |
TU C, CHEN T, ZHOU Q, et al. Biofilm formation and its influences on the properties of microplastics as affected by exposure time and depth in the seawater [J]. Science of the Total Environment, 2020, 734: 139237. doi: 10.1016/j.scitotenv.2020.139237
|
[62] |
DAWSON A L", KAWAGUCHI S, KING C K", et al. Turning microplastics into nanoplastics through digestive fragmentation by Antarctic krill [J]. Nature Communications, 2018, 9: 1001. doi: 10.1038/s41467-018-03465-9
|
[63] |
YANG Y, YANG J, WU W M, et al. Biodegradation and mineralization of polystyrene by plastic-eating mealworms: Part 1. chemical and physical characterization and isotopic tests [J]. Environmental Science & Technology, 2015, 49(20): 12080-12086.
|
[64] |
YANG Y, YANG J, WU W M, et al. Biodegradation and mineralization of polystyrene by plastic-eating mealworms: Part 2. role of gut microorganisms [J]. Environmental Science & Technology, 2015, 49(20): 12087-12093.
|
[65] |
PAÇO A, DUARTE K, da COSTA J P, et al. Biodegradation of polyethylene microplastics by the marine fungus Zalerion maritimum [J]. Science of the Total Environment, 2017, 586: 10-15. doi: 10.1016/j.scitotenv.2017.02.017
|
[66] |
RUMMEL C D, JAHNKE A, GOROKHOVA E, et al. Impacts of biofilm formation on the fate and potential effects of microplastic in the aquatic environment [J]. Environmental Science & Technology Letters, 2017, 4(7): 258-267.
|
[67] |
CHEN X C, XIONG X, JIANG X M, et al. Sinking of floating plastic debris caused by biofilm development in a freshwater lake [J]. Chemosphere, 2019, 222: 856-864. doi: 10.1016/j.chemosphere.2019.02.015
|
[68] |
OBERBECKMANN S, LÖDER M G J, LABRENZ M. Marine microplastic-associated biofilms–a review [J]. Environmental Chemistry, 2015, 12(5): 551. doi: 10.1071/EN15069
|
[69] |
LI W J, ZHANG Y, WU N, et al. Colonization characteristics of bacterial communities on plastic debris influenced by environmental factors and polymer types in the Haihe Estuary of Bohai Bay, China [J]. Environmental Science & Technology, 2019, 53(18): 10763-10773.
|
[70] |
WANG J L, GUO X, XUE J M. Biofilm-developed microplastics as vectors of pollutants in aquatic environments [J]. Environmental Science & Technology, 2021, 55(19): 12780-12790.
|
[71] |
ABDURAHMAN A, CUI K Y, WU J, et al. Adsorption of dissolved organic matter (DOM) on polystyrene microplastics in aquatic environments: Kinetic, isotherm and site energy distribution analysis [J]. Ecotoxicology and Environmental Safety, 2020, 198: 110658. doi: 10.1016/j.ecoenv.2020.110658
|
[72] |
CHEN W, OUYANG Z Y, QIAN C, et al. Induced structural changes of humic acid by exposure of polystyrene microplastics: A spectroscopic insight [J]. Environmental Pollution, 2018, 233: 1-7. doi: 10.1016/j.envpol.2017.10.027
|
[73] |
YAN X Y, YANG X Y, TANG Z, et al. Downward transport of naturally-aged light microplastics in natural loamy sand and the implication to the dissemination of antibiotic resistance genes [J]. Environmental Pollution, 2020, 262: 114270. doi: 10.1016/j.envpol.2020.114270
|
[74] |
BLANCHO F, DAVRANCHE M, FUMAGALLI F, et al. A reliable procedure to obtain environmentally relevant nanoplastic proxies [J]. Environmental Science:Nano, 2021, 8(11): 3211-3219. doi: 10.1039/D1EN00395J
|
[75] |
WALDSCHLÄGER K, BORN M, COWGER W, et al. Settling and rising velocities of environmentally weathered micro- and macroplastic particles [J]. Environmental Research, 2020, 191: 110192. doi: 10.1016/j.envres.2020.110192
|
[76] |
RUMMEL C D, ESCHER B I, SANDBLOM O, et al. Effects of leachates from UV-weathered microplastic in cell-based bioassays [J]. Environmental Science & Technology, 2019, 53(15): 9214-9223.
|
[77] |
LIU Y J, HU Y B, YANG C, et al. Aggregation kinetics of UV irradiated nanoplastics in aquatic environments [J]. Water Research, 2019, 163: 114870. doi: 10.1016/j.watres.2019.114870
|
[78] |
LANG M F, YU X Q, LIU J H, et al. Fenton aging significantly affects the heavy metal adsorption capacity of polystyrene microplastics [J]. Science of the Total Environment, 2020, 722: 137762. doi: 10.1016/j.scitotenv.2020.137762
|
[79] |
SARKAR A K, RUBIN A E, ZUCKER I. Engineered polystyrene-based microplastics of high environmental relevance [J]. Environmental Science & Technology, 2021, 55(15): 10491-10501.
|
[80] |
XI X L, WANG L, ZHOU T, et al. Effects of physicochemical factors on the transport of aged polystyrene nanoparticles in saturated porous media [J]. Chemosphere, 2022, 289: 133239. doi: 10.1016/j.chemosphere.2021.133239
|
[81] |
WANG Q J, ZHANG Y, WANGJIN X X, et al. The adsorption behavior of metals in aqueous solution by microplastics effected by UV radiation [J]. Journal of Environmental Sciences, 2020, 87: 272-280. doi: 10.1016/j.jes.2019.07.006
|
[82] |
LIU P, ZHAN X, WU X W, et al. Effect of weathering on environmental behavior of microplastics: Properties, sorption and potential risks [J]. Chemosphere, 2020, 242: 125193. doi: 10.1016/j.chemosphere.2019.125193
|
[83] |
HÜFFER T, WENIGER A K, HOFMANN T. Sorption of organic compounds by aged polystyrene microplastic particles [J]. Environmental Pollution, 2018, 236: 218-225. doi: 10.1016/j.envpol.2018.01.022
|
[84] |
DING L, MAO R F, MA S R, et al. High temperature depended on the ageing mechanism of microplastics under different environmental conditions and its effect on the distribution of organic pollutants [J]. Water Research, 2020, 174: 115634. doi: 10.1016/j.watres.2020.115634
|
[85] |
GUO X T, PANG J W, CHEN S Y, et al. Sorption properties of tylosin on four different microplastics [J]. Chemosphere, 2018, 209: 240-245. doi: 10.1016/j.chemosphere.2018.06.100
|
[86] |
FU Q M, TAN X F, YE S J, et al. Mechanism analysis of heavy metal lead captured by natural-aged microplastics [J]. Chemosphere, 2021, 270: 128624. doi: 10.1016/j.chemosphere.2020.128624
|
[87] |
LIU X M, SUN P P, QU G J, et al. Insight into the characteristics and sorption behaviors of aged polystyrene microplastics through three type of accelerated oxidation processes [J]. Journal of Hazardous Materials, 2021, 407: 124836. doi: 10.1016/j.jhazmat.2020.124836
|
[88] |
ZHAO P, CUI L M, ZHAO W G, et al. Cotransport and deposition of colloidal polystyrene microplastic particles and tetracycline in porous media: The impact of ionic strength and cationic types [J]. Science of the Total Environment, 2021, 753: 142064. doi: 10.1016/j.scitotenv.2020.142064
|
[89] |
SATHICQ M B, SABATINO R, CORNO G, et al. Are microplastic particles a hotspot for the spread and the persistence of antibiotic resistance in aquatic systems? [J]. Environmental Pollution, 2021, 279: 116896. doi: 10.1016/j.envpol.2021.116896
|
[90] |
LING X, YAN Z H, LIU Y X, et al. Transport of nanoparticles in porous media and its effects on the co-existing pollutants [J]. Environmental Pollution, 2021, 283: 117098. doi: 10.1016/j.envpol.2021.117098
|
[91] |
LIU J, MA Y N, ZHU D Q, et al. Polystyrene nanoplastics-enhanced contaminant transport: Role of irreversible adsorption in glassy polymeric domain [J]. Environmental Science & Technology, 2018, 52(5): 2677-2685.
|
[92] |
SHI J H, WU D, SU Y L, et al. Selective enrichment of antibiotic resistance genes and pathogens on polystyrene microplastics in landfill leachate [J]. Science of the Total Environment, 2021, 765: 142775. doi: 10.1016/j.scitotenv.2020.142775
|
[93] |
GE J H, LI H, LIU P, et al. Review of the toxic effect of microplastics on terrestrial and aquatic plants [J]. Science of the Total Environment, 2021, 791: 148333. doi: 10.1016/j.scitotenv.2021.148333
|
[94] |
RIST S, CARNEY ALMROTH B, HARTMANN N B, et al. A critical perspective on early communications concerning human health aspects of microplastics [J]. Science of the Total Environment, 2018, 626: 720-726. doi: 10.1016/j.scitotenv.2018.01.092
|
[95] |
XIONG X, TU Y N, CHEN X C, et al. Ingestion and egestion of polyethylene microplastics by goldfish (Carassius auratus): Influence of color and morphological features [J]. Heliyon, 2019, 5(12): e03063. doi: 10.1016/j.heliyon.2019.e03063
|
[96] |
COLE M, GALLOWAY T S. Ingestion of nanoplastics and microplastics by Pacific oyster larvae [J]. Environmental Science & Technology, 2015, 49(24): 14625-14632.
|
[97] |
LU Y F, ZHANG Y, DENG Y F, et al. Uptake and accumulation of polystyrene microplastics in zebrafish (Danio rerio) and toxic effects in liver [J]. Environmental Science & Technology, 2016, 50(7): 4054-4060.
|
[98] |
王英雪, 徐熳, 王立新, 等. 微塑料在哺乳动物的暴露途径、毒性效应和毒性机制浅述 [J]. 环境化学, 2021, 40(1): 41-54. doi: 10.7524/j.issn.0254-6108.2020053002
WANG Y X, XU M, WANG L X, et al. The exposure routes, organ damage and related mechanism of the microplastics on the mammal [J]. Environmental Chemistry, 2021, 40(1): 41-54(in Chinese). doi: 10.7524/j.issn.0254-6108.2020053002
|
[99] |
VROOM R J E, KOELMANS A A, BESSELING E, et al. Aging of microplastics promotes their ingestion by marine zooplankton [J]. Environmental Pollution, 2017, 231: 987-996. doi: 10.1016/j.envpol.2017.08.088
|
[100] |
SAVOCA M S, WOHLFEIL M E, EBELER S E, et al. Marine plastic debris emits a keystone infochemical for olfactory foraging seabirds [J]. Science Advances, 2016, 2(11): e1600395. doi: 10.1126/sciadv.1600395
|
[101] |
LUO H W, LI Y, ZHAO Y Y, et al. Effects of accelerated aging on characteristics, leaching, and toxicity of commercial lead chromate pigmented microplastics [J]. Environmental Pollution, 2020, 257: 113475. doi: 10.1016/j.envpol.2019.113475
|
[102] |
KALČÍKOVÁ G, SKALAR T, MAROLT G, et al. An environmental concentration of aged microplastics with adsorbed silver significantly affects aquatic organisms [J]. Water Research, 2020, 175: 115644. doi: 10.1016/j.watres.2020.115644
|
[103] |
ZHANG P, LU G H, SUN Y, et al. Metagenomic analysis explores the interaction of aged microplastics and roxithromycin on gut microbiota and antibiotic resistance genes of Carassius auratus [J]. Journal of Hazardous Materials, 2022, 425: 127773. doi: 10.1016/j.jhazmat.2021.127773
|