[1] 柳凤霞, 史紫薇, 钱会, 等. 银川地区地下水水化学特征演化规律及水质评价 [J]. 环境化学, 2019, 38(9): 2055-2066. doi: 10.7524/j.issn.0254-6108.2019043003 LIU F X, SHI Z W, QIAN H, et al. Evolution of groundwater hydrochemical characteristics and water quality evaluation in Yinchuan area [J]. Environmental Chemistry, 2019, 38(9): 2055-2066(in Chinese). doi: 10.7524/j.issn.0254-6108.2019043003
[2] LIU P, HOTH N, DREBENSTEDT C, et al. Hydro-geochemical paths of multi-layer groundwater system in coal mining regions—Using multivariate statistics and geochemical modeling approaches [J]. Science of the Total Environment, 2017, 601/602: 1-14. doi: 10.1016/j.scitotenv.2017.05.146
[3] 吴耀国, 沈照理, 钟佐, 等. 淄博煤矿区矿井水的化学形成及其模拟 [J]. 环境科学学报, 2000, 20(4): 401-405. doi: 10.3321/j.issn:0253-2468.2000.04.004 WU Y G, SHEN Z L, ZHONG Z S, et al. Chemical origin of mine drainage and its simulation for Zibo coal mining district [J]. Acta Scientiae Circumstantiae, 2000, 20(4): 401-405(in Chinese). doi: 10.3321/j.issn:0253-2468.2000.04.004
[4] QIAO X J, LI G M, LI M, et al. Influence of coal mining on regional Karst groundwater system: A case study in West Mountain area of Taiyuan City, Northern China [J]. Environmental Earth Sciences, 2011, 64(6): 1525-1535. doi: 10.1007/s12665-010-0586-3
[5] SINGH A K, MAHATO M K, NEOGI B, et al. Hydrogeochemistry, elemental flux, and quality assessment of mine water in the pootkee-balihari mining area, jharia coalfield, India [J]. Mine Water and the Environment, 2011, 30(3): 197-207. doi: 10.1007/s10230-011-0143-7
[6] QU S, WANG G C, SHI Z M, et al. Using stable isotopes (δD, δ18O, δ34S and 87Sr/86Sr) to identify sources of water in abandoned mines in the Fengfeng coal mining district, Northern China [J]. Hydrogeology Journal, 2018, 26(5): 1443-1453. doi: 10.1007/s10040-018-1803-5
[7] 孙芳强, 侯光才, 窦妍, 等. 鄂尔多斯盆地白垩系地下水循环特征的水化学证据: 以查布水源地为例 [J]. 吉林大学学报(地球科学版), 2009, 39(2): 269-275,293. SUN F Q, HOU G C, DOU Y, et al. Hydrogeochemistry evidence of groundwater circulation features in Ordos Cretaceous basin—A case study in chabu well field [J]. Journal of Jilin University (Earth Science Edition), 2009, 39(2): 269-275,293(in Chinese).
[8] 陈晨, 高宗军, 李伟, 等. 泰莱盆地地下水化学特征及其控制因素 [J]. 环境化学, 2019, 38(6): 1339-1347. doi: 10.7524/j.issn.0254-6108.2018090504 CHEN C, GAO Z J, LI W, et al. Characteristics and possible factors of hydrochemistry in the groundwater in Tailai basin [J]. Environmental Chemistry, 2019, 38(6): 1339-1347(in Chinese). doi: 10.7524/j.issn.0254-6108.2018090504
[9] 韩佳君, 周训, 姜长龙, 等. 柴达木盆地西部地下卤水水化学特征及其起源演化 [J]. 现代地质, 2013, 27(6): 1454-1464. doi: 10.3969/j.issn.1000-8527.2013.06.025 HAN J J, ZHOU X, JIANG C L, et al. Hydrochemical characteristics, origin and evolution of the subsurface brines in western Qaidam basin [J]. Geoscience, 2013, 27(6): 1454-1464(in Chinese). doi: 10.3969/j.issn.1000-8527.2013.06.025
[10] 华琨, 李洲, 李志. 黄土区长武塬地下水水化学特征及控制因素分析 [J]. 环境化学, 2020, 39(8): 2065-2073. doi: 10.7524/j.issn.0254-6108.2019052703 HUA K, LI Z, LI Z. The hydrochemical characteristics and controlling factors of groundwater in the Changwu loess tableland [J]. Environmental Chemistry, 2020, 39(8): 2065-2073(in Chinese). doi: 10.7524/j.issn.0254-6108.2019052703
[11] ANDRÉ L, FRANCESCHI M, POUCHAN P, et al. Using geochemical data and modelling to enhance the understanding of groundwater flow in a regional deep aquifer, Aquitaine Basin, south-west of France [J]. Journal of Hydrology, 2005, 305(1/2/3/4): 40-62.
[12] 林永生, 裴建国, 杜毓超, 等. 基于多元统计方法的岩溶地下水化学特征及影响因素分析 [J]. 环境化学, 2016, 35(11): 2394-2401. doi: 10.7524/j.issn.0254-6108.2016.11.2016032801 LIN Y S, PEI J G, DU Y C, et al. Hydrochemical characteristics of Karst groundwater and their influencing factors based on multiple statistical analysis [J]. Environmental Chemistry, 2016, 35(11): 2394-2401(in Chinese). doi: 10.7524/j.issn.0254-6108.2016.11.2016032801
[13] SOUMYA B S, SEKHAR M, RIOTTE J, et al. Inverse models to analyze the spatiotemporal variations of chemical weathering fluxes in a granito-gneissic watershed: Mule Hole, South India [J]. Geoderma, 2011, 165(1): 12-24. doi: 10.1016/j.geoderma.2011.06.015
[14] SHARIF M U, DAVIS R K, STEELE K F, et al. Inverse geochemical modeling of groundwater evolution with emphasis on arsenic in the Mississippi River Valley alluvial aquifer, Arkansas (USA) [J]. Journal of Hydrology, 2008, 350(1/2): 41-55.
[15] 张丽, 陈永金, 刘加珍, 等. 东平湖水化学特征及成因分析 [J]. 环境化学, 2021, 40(5): 1490-1502. doi: 10.7524/j.issn.0254-6108.2019122502 ZHANG L, CHEN Y J, LIU J Z, et al. Analysis on hydrochemical characteristics and causes of Dongping Lake [J]. Environmental Chemistry, 2021, 40(5): 1490-1502(in Chinese). doi: 10.7524/j.issn.0254-6108.2019122502
[16] GAMMONS C H, BROWN A, POULSON S R, et al. Using stable isotopes (S, O) of sulfate to track local contamination of the Madison Karst aquifer, Montana, from abandoned coal mine drainage [J]. Applied Geochemistry, 2013, 31: 228-238. doi: 10.1016/j.apgeochem.2013.01.008
[17] HAN Y, WANG G C, CRAVOTTA C A III, et al. Hydrogeochemical evolution of Ordovician limestone groundwater in Yanzhou, North China [J]. Hydrological Processes, 2013, 27(16): 2247-2257. doi: 10.1002/hyp.9297
[18] HUANG X J, WANG G C, LIANG X Y, et al. Hydrochemical and stable isotope (δD and δ18O) characteristics of groundwater and hydrogeochemical processes in the ningtiaota coalfield, northwest China [J]. Mine Water and the Environment, 2018, 37(1): 119-136. doi: 10.1007/s10230-017-0477-x
[19] LI P Y, WU J H, TIAN R, et al. Geochemistry, hydraulic connectivity and quality appraisal of multilayered groundwater in the hongdunzi coal mine, northwest China [J]. Mine Water and the Environment, 2018, 37(2): 222-237. doi: 10.1007/s10230-017-0507-8
[20] 沈照理. 水文地球化学基础[M]. 北京: 地质出版社, 1993. SHEN Z L. Fundamental hydrogeochemistry [M]. Beijing: Geological Publishing House, 1993(in Chinese).
[21] EDMUNDS W M, GUENDOUZ A H, MAMOU A, et al. Groundwater evolution in the continental intercalaire aquifer of southern Algeria and Tunisia: Trace element and isotopic indicators [J]. Applied Geochemistry, 2003, 18(6): 805-822. doi: 10.1016/S0883-2927(02)00189-0
[22] 栾风娇, 周金龙, 贾瑞亮, 等. 新疆巴里坤-伊吾盆地地下水水化学特征及成因 [J]. 环境化学, 2017, 36(2): 380-389. doi: 10.7524/j.issn.0254-6108.2017.02.2016062001 LUAN F J, ZHOU J L, JIA R L, et al. Hydrochemical characteristicsand formation mechanism of groundwater in plain areas of Barkol-Yiwu Basin, Xinjiang [J]. Environmental Chemistry, 2017, 36(2): 380-389(in Chinese). doi: 10.7524/j.issn.0254-6108.2017.02.2016062001
[23] 马庆伟, 杨晨光. 陕北地区砂岩的技术指标特性 [J]. 筑路机械与施工机械化, 2019, 36(2): 83-86. doi: 10.3969/j.issn.1000-033X.2019.02.015 MA Q W, YANG C G. Technical characteristics of sandstone in northern Shaanxi [J]. Road Machinery & Construction Mechanization, 2019, 36(2): 83-86(in Chinese). doi: 10.3969/j.issn.1000-033X.2019.02.015
[24] QU S, SHI Z M, LIANG X Y, et al. Multiple factors control groundwater chemistry and quality of multi-layer groundwater system in Northwest China coalfield—Using self-organizing maps (SOM) [J]. Journal of Geochemical Exploration, 2021, 227: 106795. doi: 10.1016/j.gexplo.2021.106795
[25] 刘瑞平, 徐友宁, 亢文婷. 基于phreeqci和netpath联合反演水文地球化学过程: 以小秦岭太峪水库为例 [J]. 西北地质, 2019, 52(1): 239-243. LIU R P, XU Y N, KANG W T. Based on phreeqci and netpath joint inversion hydrology geochemistry process: Example from the Xiaoqinling Tianyu reservoir [J]. Northwestern Geology, 2019, 52(1): 239-243(in Chinese).
[26] GASTMANS D, HUTCHEON I, MENEGÁRIO A A, et al. Geochemical evolution of groundwater in a basaltic aquifer based on chemical and stable isotopic data: Case study from the Northeastern portion of Serra Geral Aquifer, São Paulo state (Brazil) [J]. Journal of Hydrology, 2016, 535: 598-611. doi: 10.1016/j.jhydrol.2016.02.016