[1] 王磊, 李泽琴, 姜磊. 酸性矿山废水的危害与防治对策研究 [J]. 环境科学与管理, 2009, 34(10): 82-84. doi: 10.3969/j.issn.1673-1212.2009.10.020 WANG L, LI Z Q, JIANG L. Acidic mine waste water hazards and countermeasures research [J]. Environmental Science and Management, 2009, 34(10): 82-84(in Chinese). doi: 10.3969/j.issn.1673-1212.2009.10.020
[2] 牟力, 何腾兵, 黄会前, 等. 酸性矿山废水治理技术的研究进展 [J]. 天津农业科学, 2017, 23(2): 42-45. doi: 10.3969/j.issn.1006-6500.2017.02.010 MOU L, HE T B, HUANG H Q, et al. Progress in research on the acid mine drainage treatment [J]. Tianjin Agricultural Sciences, 2017, 23(2): 42-45(in Chinese). doi: 10.3969/j.issn.1006-6500.2017.02.010
[3] 刘志勇, 陈建中, 康海笑, 等. 酸性矿山废水的处理研究 [J]. 四川环境, 2004, 23(6): 50-53,57. doi: 10.3969/j.issn.1001-3644.2004.06.014 LIU Z Y, CHEN J Z, KANG H X, et al. Treatment and study of acid mine drainage [J]. Sichuan Environment, 2004, 23(6): 50-53,57(in Chinese). doi: 10.3969/j.issn.1001-3644.2004.06.014
[4] 邓川, 陈韵竹, 李瑶. 矿山废水处理的研究综述 [J]. 当代化工研究, 2017(11): 57-58. doi: 10.3969/j.issn.1672-8114.2017.11.035 DENG C, CHEN Y Z, LI Y. Review of research on mine wastewater treatment [J]. Modern Chemical Research, 2017(11): 57-58(in Chinese). doi: 10.3969/j.issn.1672-8114.2017.11.035
[5] 钟晓晓, 王涛, 原文丽, 等. 生物炭的制备、改性及其环境效应研究进展 [J]. 湖南师范大学自然科学学报, 2017, 40(5): 44-50. doi: 10.7612/j.issn.1000-2537.2017.05.007 ZHONG X X, WANG T, YUAN W L, et al. Progresses of preparation, modification and environmental behavior of biochar [J]. Journal of Natural Science of Hunan Normal University, 2017, 40(5): 44-50(in Chinese). doi: 10.7612/j.issn.1000-2537.2017.05.007
[6] WANG B, MA Y N, LEE X, et al. Environmental-friendly coal gangue-biochar composites reclaiming phosphate from water as a slow-release fertilizer [J]. Science of the Total Environment, 2021, 758: 143664. doi: 10.1016/j.scitotenv.2020.143664
[7] WANG B, WAN Y S, ZHENG Y L, et al. Alginate-based composites for environmental applications: A critical review [J]. Critical Reviews in Environmental Science and Technology, 2019, 49(4): 318-356. doi: 10.1080/10643389.2018.1547621
[8] WANG B, GAO B, WAN Y S. Comparative study of calcium alginate, ball-milled biochar, and their composites on aqueous methylene blue adsorption [J]. Environmental Science and Pollution Research, 2019, 26(12): 11535-11541. doi: 10.1007/s11356-018-1497-1
[9] WANG B, GAO B, WAN Y S. Entrapment of ball-milled biochar in Ca-alginate beads for the removal of aqueous Cd(Ⅱ) [J]. Journal of Industrial and Engineering Chemistry, 2018, 61: 161-168. doi: 10.1016/j.jiec.2017.12.013
[10] 马超然, 张绪超, 王朋, 等. 生物炭理化性质对其反应活性的影响 [J]. 环境化学, 2019, 38(11): 2425-2434. MA C R, ZHANG X C, WANG P, et al. Effect of physical and chemical properties of biochar on its reactivity [J]. Environmental Chemistry, 2019, 38(11): 2425-2434(in Chinese).
[11] TENG D Y, ZHANG B B, XU G M, et al. Efficient removal of Cd(Ⅱ) from aqueous solution by pinecone biochar: Sorption performance and governing mechanisms [J]. Environmental Pollution, 2020, 265: 115001. doi: 10.1016/j.envpol.2020.115001
[12] DAI W J, WU P, LIU D, et al. Adsorption of polycyclic aromatic hydrocarbons from aqueous solution by organic montmorillonite sodium alginate nanocomposites [J]. Chemosphere, 2020, 251: 126074. doi: 10.1016/j.chemosphere.2020.126074
[13] WANG Q, WANG B, LEE X, et al. Sorption and desorption of Pb(Ⅱ) to biochar as affected by oxidation and pH [J]. Science of the Total Environment, 2018, 634: 188-194. doi: 10.1016/j.scitotenv.2018.03.189
[14] WANG B, LEHMANN J, HANLEY K, et al. Adsorption and desorption of ammonium by maple wood biochar as a function of oxidation and pH [J]. Chemosphere, 2015, 138: 120-126. doi: 10.1016/j.chemosphere.2015.05.062
[15] 曹玮, 周航, 邓贵友, 等. 改性谷壳生物炭负载磁性Fe去除废水中Pb2+的效果及机制 [J]. 环境工程学报, 2017, 11(3): 1437-1444. doi: 10.12030/j.cjee.201511081 CAO W, ZHOU H, DENG G Y, et al. Effects and mechanisms of magnetic iron supported on rice husk biochar removing Pb2+ in wastewater [J]. Chinese Journal of Environmental Engineering, 2017, 11(3): 1437-1444(in Chinese). doi: 10.12030/j.cjee.201511081
[16] 刘秀, 刘立恒, 刘睿, 等. 笼芯陶黑碳微珠生物炭去除模拟废水中铬的实验研究[J]. 环境工程, 2021, 29(3): 75-81 LIU X, LIU L H, LIU R, et al. Experimental study on Cr removal from simulated wastewater by cage core black carbon beads[J/OL]. Environmental Engineering , 2021, 29(3): 75-81.
[17] 魏啸楠, 张倩, 李孟, 等. 磷酸改性生物炭负载硫化锰去除废水中重金属镉 [J]. 中国环境科学, 2020, 40(5): 2095-2102. doi: 10.3969/j.issn.1000-6923.2020.05.028 WEI X N, ZHANG Q, LI M, et al. Removal of cadmium in wastewater by phosphoric acid modified biochar supported manganese sulfide [J]. China Environmental Science, 2020, 40(5): 2095-2102(in Chinese). doi: 10.3969/j.issn.1000-6923.2020.05.028
[18] MOHAPATRA S, KUMAR M, KARIM A A, et al. Biochars evaluation for chromium pollution abatement in chromite mine wastewater and overburden of Sukinda, Odisha, India [J]. Arabian Journal of Geosciences, 2020, 13(13): 1-14.
[19] GIACHINI A J, SULZBACH T S, PINTO A L, et al. Microbially-enriched poultry litter-derived biochar for the treatment of acid mine drainage [J]. Archives of Microbiology, 2018, 200(8): 1227-1237. doi: 10.1007/s00203-018-1534-y
[20] OH S Y, YOON M K. Biochar for treating acid mine drainage [J]. Environmental Engineering Science, 2013, 30(10): 589-593. doi: 10.1089/ees.2013.0063
[21] LIATSOU I, PASHALIDIS I, DOSCHE C. Cu(Ⅱ) adsorption on 2-thiouracil-modified Luffa cylindrica biochar fibres from artificial and real samples, and competition reactions with U(Ⅵ) [J]. Journal of Hazardous Materials, 2020, 383: 120950. doi: 10.1016/j.jhazmat.2019.120950
[22] MOSLEY L M, WILLSON P, HAMILTON B, et al. The capacity of biochar made from common reeds to neutralise pH and remove dissolved metals in acid drainage [J]. Environmental Science and Pollution Research, 2015, 22(19): 15113-15122. doi: 10.1007/s11356-015-4735-9
[23] INYANG M I, GAO B, YAO Y, et al. A review of biochar as a low-cost adsorbent for aqueous heavy metal removal [J]. Critical Reviews in Environmental Science and Technology, 2016, 46(4): 406-433. doi: 10.1080/10643389.2015.1096880
[24] 辛瑞瑞. 不同酸性废水库中微生物群落季节变化及宏基因组学研究 [D]. 北京: 中国地质大学(北京), 2019. XIN R R. Seasonal variation of microbial community and metagenomics analysis in different acid mine drainage lakes [D]. Beijing: China University of Geosciences, 2019.
[25] 白润才, 李彬, 李三川, 等. 矿山酸性废水处理技术现状及进展 [J]. 长江科学院院报, 2015, 32(2): 14-19. BAI R C, LI B, LI S C, et al. Development and status of the treatment technology for acid mine drainage [J]. Journal of Yangtze River Scientific Research Institute, 2015, 32(2): 14-19(in Chinese).
[26] 王颖南, 邓奇根, 王浩, 等. 硫酸盐还原菌胞外聚合物处理酸性矿山废水的研究进展 [J]. 水处理技术, 2020, 46(12): 7-11. WANG Y N, DENG Q G, WANG H, et al. Research progress on treatment of acid mine wastewater by extracellular polymeric substances of sulfate reducing bacteria [J]. Technology of Water Treatment, 2020, 46(12): 7-11(in Chinese).
[27] 洪思奇. 聚吡咯改性活性炭去除酸性矿山废水中的硫酸盐 [D]. 北京: 中国地质大学(北京), 2014. HONG S Q. Sulfate removal from acid mine drainage using polypyrrole-grafted activated carbon [D]. Beijing: China University of Geosciences, 2014.
[28] 王贺松. 酸性矿山废水中处理技术的研究进展 [J]. 民营科技, 2018(5): 62. WANG H S. Research progress of treatment technology in acid mine wastewater [J]. Private Technology, 2018(5): 62(in Chinese).
[29] KEFENI K K, MSAGATI T A M, MAMBA B B. Acid mine drainage: Prevention, treatment options, and resource recovery: A review [J]. Journal of Cleaner Production, 2017, 151: 475-493. doi: 10.1016/j.jclepro.2017.03.082
[30] 郑琳姗, 张秀玲, 李惠雨, 等. 微生物燃料电池技术及其影响因素研究进展 [J]. 精细化工, 2021, 38(1): 1-8. ZHENG L S, ZHANG X L, LI H Y, et al. Research progress on microbial fuel cell technology and its influencing factors [J]. Fine Chemicals, 2021, 38(1): 1-8(in Chinese).
[31] 丁伟, 阿柔娜, 付志敏, 等. 重金属离子对微生物燃料电池产电性能的影响 [J]. 环境工程, 2016, 34(7): 61-65. DING W, A R N, FU Z M, et al. The influence of heavy metal ions on the microbial fuel cell performance [J]. Environmental Engineering, 2016, 34(7): 61-65(in Chinese).
[32] FADZLI F S, RASHID M, YAQOOB A A, et al. Electricity generation and heavy metal remediation by utilizing yam (Dioscorea alata) waste in benthic microbial fuel cells (BMFCs) [J]. Biochemical Engineering Journal, 2021, 172: 108067. doi: 10.1016/j.bej.2021.108067
[33] FU W, JI G Z, CHEN H H, et al. Molybdenum sulphide modified chelating resin for toxic metal adsorption from acid mine wastewater [J]. Separation and Purification Technology, 2020, 251: 117407. doi: 10.1016/j.seppur.2020.117407
[34] 辛金豪. 离子交换法处理回用电镀含铬废水的研究进展 [J]. 资源节约与环保, 2015(7): 36,39. XIN J H. Ion exchange method and treatment of recycling the research progress of electroplating wastewater containing chromium [J]. Resources Economization & Environmental Protection, 2015(7): 36,39(in Chinese).
[35] 隋岩峰, 刘松林, 杨帆. 反渗透膜处理磷肥废水的实验研究 [J]. 应用化工, 2019, 48(4): 823-826. doi: 10.3969/j.issn.1671-3206.2019.04.020 SUI Y F, LIU S L, YANG F. Experimental study on the treatment of phosphate fertilizer wastewater by reverse osmosis membrane [J]. Applied Chemical Industry, 2019, 48(4): 823-826(in Chinese). doi: 10.3969/j.issn.1671-3206.2019.04.020
[36] 戴祥昕, 桂梦瑶, 杜俊逸, 等. 硫酸盐还原菌包覆矿石控制酸性废水排放及碳源的优选研究 [J]. 地球与环境, 2021, 49(1): 73-81. DAI X X, GUI M Y, DU J Y, et al. Sulphate-reducing bacteria covered mine refuse to control acid mine drainage and the optimization of relevant carbon sources [J]. Earth and Environment, 2021, 49(1): 73-81(in Chinese).
[37] SAHINKAYA E, DURSUN N, OZKAYA B, et al. Use of landfill leachate as a carbon source in a sulfidogenic fluidized-bed reactor for the treatment of synthetic acid mine drainage [J]. Minerals Engineering, 2013, 48: 56-60. doi: 10.1016/j.mineng.2012.10.019
[38] 龙中, 吴攀, 黄家琰, 等. 多级复氧反应-垂直流人工湿地深度处理煤矿酸性废水 [J]. 环境工程学报, 2019, 13(6): 1391-1399. doi: 10.12030/j.cjee.201810086 LONG Z, WU P, HUANG J Y, et al. Advanced treatment of acid mine drainage by multi-stage reoxygenation reaction-vertical flow constructed wetland [J]. Chinese Journal of Environmental Engineering, 2019, 13(6): 1391-1399(in Chinese). doi: 10.12030/j.cjee.201810086
[39] 徐晶晶, 张继伟, 崔树军, 等. 煤矸石山酸性废水污染控制技术研究进展 [J]. 中国矿业, 2017, 26(1): 43-48. doi: 10.3969/j.issn.1004-4051.2017.01.012 XU J J, ZHANG J W, CUI S J, et al. Research progress in pollution control technologies of acidic wastewater from coal gangue [J]. China Mining Magazine, 2017, 26(1): 43-48(in Chinese). doi: 10.3969/j.issn.1004-4051.2017.01.012
[40] 蒋文瑞, 涂志红, 周姝, 等. 黄铁矿表面氧化机理及动力学影响因素研究进展 [J]. 金属矿山, 2021(3): 88-102. JIANG W R, TU Z H, ZHOU S, et al. A brief overview on the mechanism and kinetic influencing factors of the pyrite surface oxidation [J]. Metal Mine, 2021(3): 88-102(in Chinese).
[41] SKOUSEN J G, ZIEMKIEWICZ P F, MCDONALD L M. Acid mine drainage formation, control and treatment: Approaches and strategies [J]. The Extractive Industries and Society, 2019, 6(1): 241-249. doi: 10.1016/j.exis.2018.09.008
[42] 朱爱平, 田虎伟. 浅谈金属矿山酸性废水处理工艺 [J]. 现代矿业, 2020, 36(1): 204-206. doi: 10.3969/j.issn.1674-6082.2020.01.062 ZHU A P, TIAN H W. Discussion on acid mine waste water treatment process in metal mine [J]. Modern Mining, 2020, 36(1): 204-206(in Chinese). doi: 10.3969/j.issn.1674-6082.2020.01.062
[43] 曾威鸿, 董颖博, 林海. 酸性矿山废水源头控制技术研究进展 [J]. 安全与环境工程, 2020, 27(1): 104-110. ZENG W H, DONG Y B, LIN H. Research progress of source control technologies of acid mine drainage [J]. Safety and Environmental Engineering, 2020, 27(1): 104-110(in Chinese).
[44] YANG B J, LUO W, WANG X X, et al. The use of biochar for controlling acid mine drainage through the inhibition of chalcopyrite biodissolution [J]. Science of the Total Environment, 2020, 737: 139485. doi: 10.1016/j.scitotenv.2020.139485
[45] CHAI Y Z, QIN P F, ZHANG J C, et al. Simultaneous removal of Fe(Ⅱ) and Mn(Ⅱ) from acid mine wastewater by electro-Fenton process [J]. Process Safety and Environmental Protection, 2020, 143: 76-90. doi: 10.1016/j.psep.2020.06.026
[46] 丛宏斌, 赵立欣, 姚宗路, 等. 我国生物质炭化技术装备研究现状与发展建议 [J]. 中国农业大学学报, 2015, 20(2): 21-26. doi: 10.11841/j.issn.1007-4333.2015.02.003 CONG H B, ZHAO L X, YAO Z L, et al. Research status of biomass carbonization technical equipment and proposals for its development in China [J]. Journal of China Agricultural University, 2015, 20(2): 21-26(in Chinese). doi: 10.11841/j.issn.1007-4333.2015.02.003
[47] 孟凡彬, 孟军. 生物质炭化技术研究进展 [J]. 生物质化学工程, 2016, 50(6): 61-66. doi: 10.3969/j.issn.1673-5854.2016.06.010 MENG F B, MENG J. Review of biomass carbonization technology [J]. Biomass Chemical Engineering, 2016, 50(6): 61-66(in Chinese). doi: 10.3969/j.issn.1673-5854.2016.06.010
[48] 韦思业. 不同生物质原料和制备温度对生物炭物理化学特征的影响 [D]. 广州: 中国科学院大学(中国科学院广州地球化学研究所), 2017. WEI S Y. Influence of biomass feedstocks and pyrolysis temperatures on physical and chemical properties of biochar [D]. Guangzhou: Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, , 2017(in Chinese).
[49] XIANG W, ZHANG X Y, CHEN J J, et al. Biochar technology in wastewater treatment: A critical review [J]. Chemosphere, 2020, 252: 126539. doi: 10.1016/j.chemosphere.2020.126539
[50] 王志鹏, 陈蕾. 秸秆生物炭的研究进展 [J]. 应用化工, 2019, 48(2): 444-447. doi: 10.3969/j.issn.1671-3206.2019.02.045 WANG Z P, CHEN L. Research progress on straw-based biochar [J]. Applied Chemical Industry, 2019, 48(2): 444-447(in Chinese). doi: 10.3969/j.issn.1671-3206.2019.02.045
[51] 李湘萍, 张建光. 生物质热解制备多孔炭材料的研究进展 [J]. 石油学报(石油加工), 2020, 36(5): 1101-1110. LI X P, ZHANG J G. Progress on biochar preparation through pyrolysis process [J]. Acta Petrolei Sinica (Petroleum Processing Section), 2020, 36(5): 1101-1110(in Chinese).
[52] OGINNI O, SINGH K. Influence of high carbonization temperatures on microstructural and physicochemical characteristics of herbaceous biomass derived biochars [J]. Journal of Environmental Chemical Engineering, 2020, 8(5): 104169. doi: 10.1016/j.jece.2020.104169
[53] YUAN J H, XU R K. The amelioration effects of low temperature biochar generated from nine crop residues on an acidic Ultisol [J]. Soil Use and Management, 2011, 27(1): 110-115. doi: 10.1111/j.1475-2743.2010.00317.x
[54] FENG Q W, WANG B, CHEN M, et al. Invasive plants as potential sustainable feedstocks for biochar production and multiple applications: A review [J]. Resources, Conservation and Recycling, 2021, 164: 105204. doi: 10.1016/j.resconrec.2020.105204
[55] 盘丽珍. 大豆秸秆生物炭对金属硫化物尾矿污染土壤的修复作用[D]. 湘潭: 湖南科技大学, 2017. PAN L Z. The remediation of metal mine tailings contaminated siol by biochar derived from soybean straw[D]. Xiangtan: Hunan University of Science and Technology, 2017.
[56] 张天乐, 邱凌, 王雅君. 慢速热解对玉米秸秆炭理化特性的影响 [J]. 可再生能源, 2019, 37(10): 1423-1428. doi: 10.3969/j.issn.1671-5292.2019.10.001 ZHANG T L, QIU L, WANG Y J. Study on process optimization of slow pyrolysis parameters of corn stalks [J]. Renewable Energy Resources, 2019, 37(10): 1423-1428(in Chinese). doi: 10.3969/j.issn.1671-5292.2019.10.001
[57] 李敏, 赵立欣, 孟海波, 等. 慢速热解条件下生物炭理化特性分析 [J]. 农机化研究, 2015, 37(3): 248-253. doi: 10.3969/j.issn.1003-188X.2015.03.061 LI M, ZHAO L X, MENG H B, et al. Analysis of biochar physical and chemical properties under the condition of slow pyrolysis [J]. Journal of Agricultural Mechanization Research, 2015, 37(3): 248-253(in Chinese). doi: 10.3969/j.issn.1003-188X.2015.03.061
[58] 肖琴, 刘有才, 曹占芳, 等. 生物炭吸附废水中重金属离子的研究进展 [J]. 环境科技, 2019, 32(1): 68-73. XIAO Q, LIU Y C, CAO Z F, et al. Research progress on the absorption of heavy metals from wastewater by biochar [J]. Environmental Science and Technology, 2019, 32(1): 68-73(in Chinese).
[59] 高凯芳, 简敏菲, 余厚平, 等. 裂解温度对稻秆与稻壳制备生物炭表面官能团的影响 [J]. 环境化学, 2016, 35(8): 1663-1669. doi: 10.7524/j.issn.0254-6108.2016.08.2016010607 GAO K F, JIAN M F, YU H P, et al. Effects of pyrolysis temperatures on the biochars and its surface functional groups made from rice straw and rice husk [J]. Environmental Chemistry, 2016, 35(8): 1663-1669(in Chinese). doi: 10.7524/j.issn.0254-6108.2016.08.2016010607
[60] 勾芒芒, 屈忠义. 生物炭对改善土壤理化性质及作物产量影响的研究进展 [J]. 中国土壤与肥料, 2013(5): 1-5. doi: 10.11838/sfsc.20130501 GOU M M, QU Z Y. Research on using biochar to agricultural soil amendment and crop yield [J]. Soil and Fertilizer Sciences in China, 2013(5): 1-5(in Chinese). doi: 10.11838/sfsc.20130501
[61] 王彤彤, 王晓琳, 任志胜, 等. 不同原料制备的生物炭形貌结构及表面特性研究 [J]. 环境科学与技术, 2017, 40(1): 42-48. WANG T T, WANG X L, REN Z S, et al. Microscopic morphology and surface features of biochars derived from different raw materials [J]. Environmental Science & Technology, 2017, 40(1): 42-48(in Chinese).
[62] 刘青松, 赵丽芳. 热解温度对生物炭表面性质及释放氮磷的影响 [J]. 农业资源与环境学报, 2016, 33(2): 164-169. LIU Q S, ZHAO L F. Effects of biochar pyrolysis temperature on its surface characteristics and nitrogen and phosphorus release [J]. Journal of Agricultural Resources and Environment, 2016, 33(2): 164-169(in Chinese).
[63] 范世锁, 刘文浦, 王锦涛, 等. 茶渣生物炭制备及其对溶液中四环素的去除特性 [J]. 环境科学, 2020, 41(3): 1308-1318. FAN S S, LIU W P, WANG J T, et al. Preparation of tea waste biochar and its application in tetracycline removal from aqueous solution [J]. Environmental Science, 2020, 41(3): 1308-1318(in Chinese).
[64] 孙涛, 朱新萍, 李典鹏, 等. 不同原料生物炭理化性质的对比分析 [J]. 农业资源与环境学报, 2017, 34(6): 543-549. SUN T, ZHU X P, LI D P, et al. Comparison of biochars characteristics from different raw materials [J]. Journal of Agricultural Resources and Environment, 2017, 34(6): 543-549(in Chinese).
[65] 林珈羽, 张越, 刘沅, 等. 不同原料和炭化温度下制备的生物炭结构及性质 [J]. 环境工程学报, 2016, 10(6): 3200-3206. doi: 10.12030/j.cjee.201501107 LIN J Y, ZHANG Y, LIU Y, et al. Structure and properties of biochar under different materials and carbonization temperatures [J]. Chinese Journal of Environmental Engineering, 2016, 10(6): 3200-3206(in Chinese). doi: 10.12030/j.cjee.201501107
[66] 尹云锋, 张鹏, 雷海迪, 等. 不同热解温度对生物质炭化学性质的影响 [J]. 热带作物学报, 2014, 35(8): 1496-1500. doi: 10.3969/j.issn.1000-2561.2014.08.008 YIN Y F, ZHANG P, LEI H D, et al. Influence of different pyrolysis temperature on chemical properties of biochar [J]. Chinese Journal of Tropical Crops, 2014, 35(8): 1496-1500(in Chinese). doi: 10.3969/j.issn.1000-2561.2014.08.008
[67] 胡华英, 曹升, 杨靖宇, 等. 生物炭对杉木人工林土壤磷素吸附解吸特性的影响 [J]. 西北林学院学报, 2019, 34(4): 8-15. doi: 10.3969/j.issn.1001-7461.2019.04.02 HU H Y, CAO S, YANG J Y, et al. Effects of biochar on phosphorus adsorption and desorption characteristics of Cunninghamia lanceolata plantation [J]. Journal of Northwest Forestry University, 2019, 34(4): 8-15(in Chinese). doi: 10.3969/j.issn.1001-7461.2019.04.02
[68] 周强, 黄代宽, 余浪, 等. 热解温度和时间对生物炭pH值的影响 [J]. 地球环境学报, 2015, 6(3): 195-200. doi: 10.7515/JEE201503008 ZHOU Q, HUANG D K, YU L, et al. Effects of pyrolysis temperature, time and biochar mass ratio on pH value determination for four biochar solutions [J]. Journal of Earth Environment, 2015, 6(3): 195-200(in Chinese). doi: 10.7515/JEE201503008
[69] 徐佳, 刘荣厚. 不同慢速热裂解工艺条件下棉花秸秆生物炭的理化特性分析 [J]. 上海交通大学学报(农业科学版), 2017, 35(2): 19-24. XU J, LIU R H. Physicochemical properties of cotton stalk biochar under different slow pyrolysis conditions [J]. Journal of Shanghai Jiao Tong University (Agricultural Science), 2017, 35(2): 19-24(in Chinese).
[70] MENG J, FENG X L, DAI Z M, et al. Adsorption characteristics of Cu(Ⅱ) from aqueous solution onto biochar derived from swine manure [J]. Environmental Science and Pollution Research, 2014, 21(11): 7035-7046. doi: 10.1007/s11356-014-2627-z
[71] WANG H, TAN L Y, HU B W, et al. Removal of Cr(Ⅵ) from acid mine drainage with clay-biochar composite [J]. Desalination and Water Treatment, 2019, 165: 212-221. doi: 10.5004/dwt.2019.24572
[72] YOON K, CHO D W, TSANG D C W, et al. Fabrication of engineered biochar from paper mill sludge and its application into removal of arsenic and cadmium in acidic water [J]. Bioresource Technology, 2017, 246: 69-75. doi: 10.1016/j.biortech.2017.07.020
[73] PAN J J, JIANG J, XU R K. Adsorption of Cr(Ⅲ) from acidic solutions by crop straw derived biochars [J]. Journal of Environmental Sciences, 2013, 25(10): 1957-1965. doi: 10.1016/S1001-0742(12)60305-2
[74] 刘延湘, 黄彪, 张丽. 花生壳生物炭对水中重金属Cr6+、Cu2+的吸附研究 [J]. 科学技术与工程, 2017, 17(13): 81-85. doi: 10.3969/j.issn.1671-1815.2017.13.015 LIU Y X, HUANG B, ZHANG L. Adsorption of heavy metal Cr6+ and Cu2+ in aqueous solutions by peanut shell biochar [J]. Science Technology and Engineering, 2017, 17(13): 81-85(in Chinese). doi: 10.3969/j.issn.1671-1815.2017.13.015
[75] 王桂仙, 张启伟. 竹炭对水体中重金属离子的吸附规律研究 [J]. 化学与生物工程, 2008, 25(3): 66-68. doi: 10.3969/j.issn.1672-5425.2008.03.019 WANG G X, ZHANG Q W. Adsorption law of bamboo-charcoal for heavy metal ions in aqueous solution [J]. Chemistry & Bioengineering, 2008, 25(3): 66-68(in Chinese). doi: 10.3969/j.issn.1672-5425.2008.03.019
[76] PARK J H, CHO J S, OK Y S, et al. Comparison of single and competitive metal adsorption by pepper stem biochar [J]. Archives of Agronomy and Soil Science, 2016, 62(5): 617-632. doi: 10.1080/03650340.2015.1074186
[77] 王重庆, 王晖, 江小燕, 等. 生物炭吸附重金属离子的研究进展 [J]. 化工进展, 2019, 38(1): 692-706. WANG C Q, WANG H, JIANG X Y, et al. Research advances on adsorption of heavy metals by biochar [J]. Chemical Industry and Engineering Progress, 2019, 38(1): 692-706(in Chinese).
[78] 杨选民, 王雅君, 邱凌, 等. 温度对生物质三组分热解制备生物炭理化特性的影响 [J]. 农业机械学报, 2017, 48(4): 284-290. doi: 10.6041/j.issn.1000-1298.2017.04.037 YANG X M, WANG Y J, QIU L, et al. Effect of temperature on physicochemical properties of biochar prepared by pyrolysis of three components of biomass [J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(4): 284-290(in Chinese). doi: 10.6041/j.issn.1000-1298.2017.04.037
[79] 蒋艳艳, 胡孝明, 金卫斌. 生物炭对废水中重金属吸附研究进展 [J]. 湖北农业科学, 2013, 52(13): 2984-2988. doi: 10.3969/j.issn.0439-8114.2013.13.003 JIANG Y Y, HU X M, JIN W B. Advances on absorption of heavy metals in the waste water by biochar [J]. Hubei Agricultural Sciences, 2013, 52(13): 2984-2988(in Chinese). doi: 10.3969/j.issn.0439-8114.2013.13.003
[80] 丁文川, 杜勇, 曾晓岚, 等. 富磷污泥生物炭去除水中Pb(Ⅱ)的特性研究 [J]. 环境化学, 2012, 31(9): 1375-1380. DING W C, DU Y, ZENG X L, et al. Aqueous solution Pb(Ⅱ) removal by biochar derived from phosphorus-rich excess sludge [J]. Environmental Chemistry, 2012, 31(9): 1375-1380(in Chinese).
[81] 徐楠楠, 林大松, 徐应明, 等. 玉米秸秆生物炭对Cd2+的吸附特性及影响因素 [J]. 农业环境科学学报, 2014, 33(5): 958-964. doi: 10.11654/jaes.2014.05.019 XU N N, LIN D S, XU Y M, et al. Adsorption of aquatic Cd2+ by biochar obtained from corn stover [J]. Journal of Agro-Environment Science, 2014, 33(5): 958-964(in Chinese). doi: 10.11654/jaes.2014.05.019
[82] ZHANG Z B, CAO X H, LIANG P, et al. Adsorption of uranium from aqueous solution using biochar produced by hydrothermal carbonization [J]. Journal of Radioanalytical and Nuclear Chemistry, 2013, 295(2): 1201-1208. doi: 10.1007/s10967-012-2017-2
[83] 沈州, 罗仙平, 周丹, 等. 生物炭对离子型稀土矿山尾水中氨氮的吸附特性研究 [J]. 中国稀土学报, 2021, 17(5): 1-14. SHEN Z, LUO X P, ZHOU D, et al. Study on the adsorption characteristics of biochar to ammonia nitrogen in ionic rare earth mine tail water [J]. Journal of the Chinese Rare Earth Society, 2021, 17(5): 1-14(in Chinese).
[84] 郭海艳, 李雪琴, 王章鸿, 等. 蚯蚓粪生物炭对Cu(Ⅱ)的吸附性能 [J]. 环境工程学报, 2016, 10(7): 3811-3818. doi: 10.12030/j.cjee.201501229 GUO H Y, LI X Q, WANG Z H, et al. Performances of Cu(Ⅱ) adsorption by biochar derived from earthworm manure [J]. Chinese Journal of Environmental Engineering, 2016, 10(7): 3811-3818(in Chinese). doi: 10.12030/j.cjee.201501229
[85] WANG B, LEHMANN J, HANLEY K, et al. Ammonium retention by oxidized biochars produced at different pyrolysis temperatures and residence times [J]. RSC Advances, 2016, 6(48): 41907-41913. doi: 10.1039/C6RA06419A
[86] TONG X J, LI J Y, YUAN J H, et al. Adsorption of Cu(Ⅱ) by biochars generated from three crop straws [J]. Chemical Engineering Journal, 2011, 172(2/3): 828-834.
[87] BANDARA T, XU J M, POTTER I D, et al. Mechanisms for the removal of Cd(Ⅱ) and Cu(Ⅱ) from aqueous solution and mine water by biochars derived from agricultural wastes [J]. Chemosphere, 2020, 254: 126745. doi: 10.1016/j.chemosphere.2020.126745
[88] 戴静, 刘阳生. 四种原料热解产生的生物炭对Pb2+和Cd2+的吸附特性研究 [J]. 北京大学学报(自然科学版), 2013, 49(6): 1075-1082. DAI J, LIU Y S. Adsorption of Pb2+ and Cd2+ onto biochars derived from pyrolysis of four kinds of biomasses [J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2013, 49(6): 1075-1082(in Chinese).
[89] WANG S S, GAO B, ZIMMERMAN A R, et al. Physicochemical and sorptive properties of biochars derived from woody and herbaceous biomass [J]. Chemosphere, 2015, 134: 257-262. doi: 10.1016/j.chemosphere.2015.04.062
[90] LI H B, DONG X L, da SILVA E B, et al. Mechanisms of metal sorption by biochars: Biochar characteristics and modifications [J]. Chemosphere, 2017, 178: 466-478. doi: 10.1016/j.chemosphere.2017.03.072
[91] 张继义, 蒲丽君, 李根. 秸秆生物碳质吸附剂的制备及其吸附性能 [J]. 农业工程学报, 2011, 27(增刊2): 104-109. ZHANG J Y, PU L J, LI G. Preparation of biochar adsorbent from straw and its adsorption capability [J]. Transactions of the Chinese Society of Agricultural Engineering, 2011, 27(Sup 2): 104-109.
[92] 林芳竹, 张珣. 生物炭在环境领域的研究与应用进展 [J]. 环境保护与循环经济, 2019, 39(10): 17-20,70. doi: 10.3969/j.issn.1674-1021.2019.10.006 LIN F Z, ZHANG X. Progress in research and application of biochar in the field of environment [J]. Environmental Protection and Circular Economy, 2019, 39(10): 17-20,70(in Chinese). doi: 10.3969/j.issn.1674-1021.2019.10.006
[93] 蒲生彦, 上官李想, 刘世宾, 等. 生物炭及其复合材料在土壤污染修复中的应用研究进展 [J]. 生态环境学报, 2019, 28(3): 629-635. PU S Y, SHANGGUAN L X, LIU S B, et al. A review of the application of biochar and its composites in soil remediation [J]. Ecology and Environmental Sciences, 2019, 28(3): 629-635(in Chinese).
[94] WANG B, LEE X, THENG B K G, et al. Biochar addition can reduce NOx gas emissions from a calcareous soil [J]. Environmental Pollutants and Bioavailability, 2019, 31(1): 38-48. doi: 10.1080/09542299.2018.1544035
[95] FANG B, LEE X, ZHANG J, et al. Impacts of straw biochar additions on agricultural soil quality and greenhouse gas fluxes in Karst area, Southwest China [J]. Soil Science and Plant Nutrition, 2016, 62(5/6): 526-533.
[96] 李阳, 李心清, 王兵, 等. 四种改良剂对酸性黄壤土壤酸度和肥力的影响 [J]. 地球与环境, 2016, 44(6): 683-690. LI Y, LIN X Q, WANG B, et al. Effects of four soil amendments on improving soil quality and acidity of yellow soils [J]. Earth and Environment, 2016, 44(6): 683-690(in Chinese).
[97] 徐东昱, 周怀东, 高博. 生物炭吸附重金属污染物的研究进展 [J]. 中国水利水电科学研究院学报, 2016, 14(1): 7-15. XU D Y, ZHOU H D, GAO B. Review of sorption of heavy metal contaminant on biochar [J]. Journal of China Institute of Water Resources and Hydropower Research, 2016, 14(1): 7-15(in Chinese).
[98] 刘俊峰, 祝怡斌, 杨晓松, 等. 生物炭去除重金属的研究进展 [J]. 价值工程, 2015, 34(22): 149-152. LIU J F, ZHU Y B, YANG X S, et al. Research progress of dislodging heavy metals by biochar [J]. Value Engineering, 2015, 34(22): 149-152(in Chinese).
[99] QIN Y J, ZHU X L, SU Q, et al. Enhanced removal of ammonium from water by ball-milled biochar [J]. Environmental Geochemistry and Health, 2020, 42(6): 1579-1587. doi: 10.1007/s10653-019-00474-5
[100] 莫官海, 谢水波, 曾涛涛, 等. 污泥基生物炭处理酸性含U(Ⅵ)废水的效能与机理 [J]. 化工学报, 2020, 71(5): 2352-2362. MO G H, XIE S B, ZENG T T, et al. The efficiency and mechanism of U(Ⅵ) removal from acidic wastewater by sewage sludge-derived biochar [J]. CIESC Journal, 2020, 71(5): 2352-2362(in Chinese).
[101] 朱墨染. 农业废弃物改性生物炭对水中Fe2+和Mn2+去除的应用研究[D]. 哈尔滨: 东北农业大学, 2017. ZHU M R. Study on the use of agricultural waste modified biochar removal of iron ions and manganese ions from water [D]. Harbin: Northeast Agricultural University, 2017.
[102] 宋泽峰, 石晓倩, 刘卓, 等. 芦苇生物炭的制备、表征及其吸附铜离子与双酚A的性能 [J]. 环境化学, 2020, 39(8): 2196-2205. doi: 10.7524/j.issn.0254-6108.2019052001 SONG Z F, SHI X Q, LIU Z, et al. Synthesis and characterization of reed-based biochar and its adsorption properties for Cu2+ and bisphenol A (BPA) [J]. Environmental Chemistry, 2020, 39(8): 2196-2205(in Chinese). doi: 10.7524/j.issn.0254-6108.2019052001
[103] WANG D M, ROOT R A, CHOROVER J. Biochar-templated surface precipitation and inner-sphere complexation effectively removes arsenic from acid mine drainage [J]. Environmental Science and Pollution Research, 2021: 1-15.
[104] 常帅帅, 张学杨, 王洪波, 等. 木屑生物炭的制备及其对Pb2+的吸附特性研究 [J]. 生物质化学工程, 2020, 54(3): 37-44. doi: 10.3969/j.issn.1673-5854.2020.03.006 CHANG S S, ZHANG X Y, WANG H B, et al. Preparation of biochar from sawdust and it's adsorption property on Pb2+ [J]. Biomass Chemical Engineering, 2020, 54(3): 37-44(in Chinese). doi: 10.3969/j.issn.1673-5854.2020.03.006
[105] 李瑞月, 陈德, 李恋卿, 等. 不同作物秸秆生物炭对溶液中Pb2+、Cd2+的吸附 [J]. 农业环境科学学报, 2015, 34(5): 1001-1008. doi: 10.11654/jaes.2015.05.025 LI R Y, CHEN D, LI L Q, et al. Adsorption of Pb2+ and Cd2+ in aqueous solution by biochars derived from different crop residues [J]. Journal of Agro-Environment Science, 2015, 34(5): 1001-1008(in Chinese). doi: 10.11654/jaes.2015.05.025
[106] 曹健华, 刘凌沁, 黄亚继, 等. 原料种类和热解温度对生物炭吸附Cd2+的影响 [J]. 化工进展, 2019, 38(9): 4183-4190. CAO J H, LIU L Q, HUANG Y J, et al. Effects of feedstock type and pyrolysis temperature on Cd2+ adsorption by biochar [J]. Chemical Industry and Engineering Progress, 2019, 38(9): 4183-4190(in Chinese).
[107] 廖衡妍. 生物炭和电石渣对矿区AMD污染的控制和修复作用[D]. 湘潭: 湖南科技大学, 2019. LIAO H Y. Control and remediation of AMD pollution by biochar and carbide slag in mining area [D]. Xiangtan: Hunan University of Science and Technology, 2019.
[108] AO H T, CAO W, HONG Y X, et al. Adsorption of sulfate ion from water by zirconium oxide-modified biochar derived from pomelo peel [J]. Science of the Total Environment, 2020, 708: 135092. doi: 10.1016/j.scitotenv.2019.135092
[109] 敖涵婷. 锆改性柚子皮生物炭吸附硫酸根的性能及机理研究[D]. 泉州: 华侨大学, 2020. AO H T. Performance and mechanism of sulfate adsorption byzirconium-modified pomelo peel biochar [D]. Quanzhou: Huaqiao University, 2020.