[1] 熊佳蕙, 闫峰. 沙尘暴成因及人文思考[J]. 灾害学, 2004(1): 94 − 98.
[2] ZHAO C, LIU X, LEUNG L R, et al. The spatial distribution of mineral dust and its shortwave radiative forcing over North Africa: modeling sensitivities to dust emissions and aerosol size treatments[J]. Atmospheric Chemistry and Physics, 2010, 10(18): 8821 − 8838. doi: 10.5194/acp-10-8821-2010
[3] CREAMEAN J M, SUSKI K J, ROSENFELD D, et al. Dust and biological aerosols from the sahara and asia influence precipitation in the Western U. S[J]. Science, 2013, 339(6127): 1572 − 1578. doi: 10.1126/science.1227279
[4] 李全喜, 王金艳, 刘筱冉, 等. 兰州市区臭氧时空分布特征及气象和环境因子对臭氧的影响[J]. 环境保护科学, 2018, 44(2): 78 − 84.
[5] ZHANG X Y, GONG S L, ZHAO T L, et al. Sources of Asian dust and role of climate change versus desertification in Asian dust emission [J]. Geophysical Research Letters, 2003, 30(24).
[6] GRELL G A, PECKHAM S E, SCHMITZ R, et al. Fully coupled "online" chemistry within the WRF model[J]. Atmospheric Environment, 2005, 39(37): 6957 − 6975. doi: 10.1016/j.atmosenv.2005.04.027
[7] 李明妍. Nudging方法对西北干旱区降水和近地面风速模拟的改进[D]. 兰州: 兰州大学, 2018.
[8] 马媛媛. 分段积分方法在湖泊气候效应模拟中的应用研究[D]. 兰州: 兰州大学, 2018.
[9] 刘筱冉, 王金艳, 邱继勇, 等. 起沙方案对西北地区沙尘过程模拟的影响[J]. 环境保护科学, 2018, 44(4): 69 − 76.
[10] 付旭东, 李龙燕, 王金艳, 等. 两种再分析资料对我国西北地区沙尘模拟的影响[J]. 环境保护科学, 2019, 45(2): 64 − 73.
[11] ZHAO J Q, MA X Y, WU S Q, et al. Dust emission and transport in Northwest China: WRF-Chem simulation and comparisons with multi-sensor observations[J]. Atmospheric Research, 2020, 241: 104978. doi: 10.1016/j.atmosres.2020.104978
[12] ZENG Y, WANG M H, ZHAO C, et al. WRF-Chem v3.9 simulations of the East Asian dust storm in May 2017: modeling sensitivities to dust emission and dry deposition schemes[J]. Geoscientific Model Development, 2020, 13(4): 2125 − 2147. doi: 10.5194/gmd-13-2125-2020
[13] 董美莹, 陈锋, 冀春晓. 不同要素谱逼近对高分辨区域数值模式梅雨模拟的改进[J]. 气象, 2019, 45(5): 593 − 605.
[14] LEGRAND S L, POLASHENSKI C, LETCHER T W, et al. The AFWA dust emission scheme for the GOCART aerosol model in WRF-Chem v3.8. 1[J]. Geoscientific Model Development, 2019, 12(1): 131 − 166. doi: 10.5194/gmd-12-131-2019
[15] SHAO Y P. Simplification of a dust emission scheme and comparison with data [J]. Journal of Geophysical Research-Atmospheres, 2004, 109(D10).
[16] MARTICORENA B, BERGAMETTI G. Modeling the atmospheric dust cycle. 1. design of a soil-derived dust emission scheme[J]. Journal of Geophysical Research-Atmospheres, 1995, 100(D8): 16415 − 16430. doi: 10.1029/95JD00690
[17] SHAO Y P. A model for mineral dust emission[J]. Journal of Geophysical Research Atmospheres, 2001, 106(D17): 20239 − 20254. doi: 10.1029/2001JD900171
[18] STAUFFER D R, SEAMAN N L. Use of four-dimensional data assimilation in a limited-area mesoscale model. Part I: Experiments with synoptic-scale data[J]. Monthly Weather Review, 1990, 118: 1250 − 1277. doi: 10.1175/1520-0493(1990)118<1250:UOFDDA>2.0.CO;2
[19] GLISAN J M, GUTOWSKI W J, CASSANO J J, et al. Effects of spectral Nudging in WRF on arctic temperature and precipitation simulations[J]. Journal of Climate, 2013, 26(12): 3985 − 3999. doi: 10.1175/JCLI-D-12-00318.1
[20] 李明妍, 崔志强, 王澄海. Nudging方法对中国西北强降水过程的模拟试验研究[J]. 气候与环境研究, 2017, 22(5): 563 − 573. doi: 10.3878/j.issn.1006-9585.2017.16177
[21] CHEN S H, SUN W Y. A one-dimensional time dependent cloud model[J]. Journal of the Meteorological Society of Japan, 2002, 80(1): 99 − 118.
[22] IACONO M J, DELAMERE J S, MLAWER E J, et al. Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models [J]. Journal of Geophysical Research-Atmospheres, 2008, 113(D13).
[23] GRELL G A, FREITAS S R. A scale and aerosol aware stochastic convective parameterization for weather and air quality modeling[J]. Atmospheric Chemistry and Physics, 2014, 14(10): 5233 − 5250. doi: 10.5194/acp-14-5233-2014
[24] TEWARI M , CHEN F , WANG W , et al. Implementation and verification of the united NOAH land surface model in the WRF model[C]// 20th Conference on Weather Analysis and Forecasting/16th Conference on Numerical Weather Prediction, 2016.
[25] HONG S Y, NOH Y, DUDHIA J. A new vertical diffusion package with an explicit treatment of entrainment processes[J]. Monthly Weather Review, 2006, 134(9): 2318 − 2341. doi: 10.1175/MWR3199.1
[26] JIMENEZ P A, DUDHIA J, GONZALEZ-ROUCO J F, et al. A revised scheme for the WRF surface layer formulation[J]. Monthly Weather Review, 2012, 140(3): 898 − 918. doi: 10.1175/MWR-D-11-00056.1
[27] HEWSON M, MCGOWAN H, PHINN S, et al. Comparing remotely sensed and modelled aerosol properties for a region of low aerosol optical depth [M]. 2012 IEEE International Geoscience and Remote Sensing Symposium, 2012: 2512-2515.
[28] FAST J D, GUSTAFSON W I, EASTER R C, et al. Evolution of ozone, particulates, and aerosol direct radiative forcing in the vicinity of Houston using a fully coupled meteorology-chemistry-aerosol model [J]. Journal of Geophysical Research-Atmospheres, 2006, 111(D21).
[29] Brown, R. G. W. (1984). Absorption and Scattering of Light by Small Particles. Journal of Modern Optics, 31, 3-3.
[30] HUANG J P, MINNIS P, YI Y H, et al. Summer dust aerosols detected from CALIPSO over the Tibetan Plateau[J]. Geophysical Research Letters, 2007, 34(18): 529 − 538.
[31] LEVY R C, MATTOO S, MUNCHAK L A, et al. The Collection 6 MODIS aerosol products over land and ocean[J]. Atmospheric Measurement Techniques, 2013, 6(11): 2989 − 3034. doi: 10.5194/amt-6-2989-2013