[1] LIU Y M, CHEN W, LI D H, et al. Cyanobacteria-/cyanotoxin-contaminations and eutrophication status before Wuxi drinking water crisis in Lake Taihu, China[J]. Journal of Environmental Sciences, 2011, 23(4): 575-581. doi: 10.1016/S1001-0742(10)60450-0
[2] 秦伯强. 我国湖泊富营养化及其水环境安全[J]. 科学对社会的影响, 2007(3): 17-23.
[3] PU J, WANG S R, NI Z K, et al. Implications of phosphorus partitioning at the suspended particle-water interface for lake eutrophication in China's largest freshwater lake, Poyang Lake[J]. Chemosphere, 2021, 263: 128334. doi: 10.1016/j.chemosphere.2020.128334
[4] AUVRAY F, VAN HULLEBUSCH E D, DELUCHAT V, et al. Laboratory investigation of the phosphorus removal (SRP and TP) from eutrophic lake water treated with aluminium[J]. Water Research, 2006, 40(14): 2713-2719. doi: 10.1016/j.watres.2006.04.042
[5] 孟顺龙, 裘丽萍, 陈家长, 等. 污水化学沉淀法除磷研究进展[J]. 中国农学通报, 2012, 28(35): 264-268. doi: 10.3969/j.issn.1000-6850.2012.35.049
[6] ZHANG C, GUISASOLA A, BAEZA J A. Achieving simultaneous biological COD and phosphorus removal in a continuous anaerobic/aerobic A-stage system[J]. Water Research, 2021, 190: 116703. doi: 10.1016/j.watres.2020.116703
[7] GAN F Q, ZHOU J M, WANG H Y, et al. Removal of phosphate from aqueous solution by thermally treated natural palygorskite[J]. Water Research, 2009, 43(11): 2907-2915. doi: 10.1016/j.watres.2009.03.051
[8] GOSCIANSKA J, PTASZKOWSKA-KONIARZ M, FRANKOWSKI M, et al. Removal of phosphate from water by lanthanum-modified zeolites obtained from fly ash[J]. Journal of Colloid and Interface Science, 2018, 513: 72-81. doi: 10.1016/j.jcis.2017.11.003
[9] 任琪琪, 唐婉莹, 殷鹏, 等. 镧改性膨润土对底泥内源磷控制效果[J]. 中国环境科学, 2021, 41(1): 199-206. doi: 10.3969/j.issn.1000-6923.2021.01.023
[10] 林娟, 姚佳雯, 魏笑, 等. 镧改性膨润土对磷吸附特性、机理与影响因素[J]. 环境科学与技术, 2021, 44(1): 7-12.
[11] WANG Z J, MIAO R R, NING P, et al. From wastes to functions: A paper mill sludge-based calcium-containing porous biochar adsorbent for phosphorus removal[J]. Journal of Colloid and Interface Science, 2021, 593: 434-446. doi: 10.1016/j.jcis.2021.02.118
[12] ZHU D C, CHEN Y Q, YANG H P, et al. Synthesis and characterization of magnesium oxide nanoparticle-containing biochar composites for efficient phosphorus removal from aqueous solution[J]. Chemosphere, 2020, 247: 125847. doi: 10.1016/j.chemosphere.2020.125847
[13] 王泽龙, 李顺义, 吴朕君. 膨润土改性和复配及在废水处理中的应用进展[J]. 工业水处理, 2022, 42(2): 11-18.
[14] 赵军超, 王权, 任秀娜, 等. 钙基膨润土辅助对堆肥及土壤Cu、Zn形态转化和白菜吸收的影响[J]. 环境科学, 2018, 39(4): 1926-1933.
[15] ZHANG X L, XUE Y, GAO J T, et al. Comparison of adsorption mechanisms for cadmium removal by modified zeolites and sands coated with Zn-layered double hydroxides[J]. Chemical Engineering Journal, 2020, 380: 122578. doi: 10.1016/j.cej.2019.122578
[16] TANG Y Q, LIAO X S, ZHANG X L, et al. Enhanced adsorption of hexavalent chromium and the microbial effect on quartz sand modified with Al-layered double hydroxides[J]. Science of the Total Environment, 2021, 762: 143094. doi: 10.1016/j.scitotenv.2020.143094
[17] 胡美艳, 张翔凌, 姬筠森, 等. 两种碳酸系Fe-LDHs负载改性沸石对Cd(Ⅱ)吸附特性对比研究[J]. 环境科学研究, 2021, 34(11): 2655-2664.
[18] GOH K H, LIM T T, DONG Z. Application of layered double hydroxides for removal of oxyanions: a review[J]. Water Research, 2008, 42(6/7): 1343-1368.
[19] REZAK N, BAHMANI A, BETTAHAR N. Adsorptive removal of P(V) and Cr(VI) by calcined Zn-Al-Fe ternary LDHs[J]. Water Science and Technology, 2021, 83(10): 2504-2517. doi: 10.2166/wst.2021.123
[20] 付瑜玲, 严晗璐, 姚天启, 等. 改性镁铝水滑石对黑臭水体中磷的去除效果研究[J]. 环境科学学报, 2021, 41(10): 4032-4038.
[21] 张翔凌, 黄华玲, 郭露, 等. Zn系LDHs覆膜改性人工湿地沸石基质除磷机制[J]. 环境科学, 2016, 37(8): 3058-3066.
[22] 张翔凌, 陈俊杰, 郭露, 等. 垂直流人工湿地LDHs覆膜改性沸石基质强化除磷效果及其机制[J]. 环境科学, 2014, 35(12): 4553-4559.
[23] YIN H, REN C, LI W. Introducing hydrate aluminum into porous thermally-treated calcium-rich attapulgite to enhance its phosphorus sorption capacity for sediment internal loading management[J]. Chemical Engineering Journal, 2018, 348: 704-712. doi: 10.1016/j.cej.2018.05.065
[24] WANG Z, LU S, WU D, et al. Control of internal phosphorus loading in eutrophic lakes using lanthanum-modified zeolite[J]. Chemical Engineering Journal, 2017, 327: 505-513. doi: 10.1016/j.cej.2017.06.111
[25] 范中亚, 王文才, 蒋锦刚, 等. 华阳河湖群沉积物内源磷释放风险及控制策略[J]. 环境科学研究, 2020, 33(5): 1170-1178.
[26] 刘辉, 胡林娜, 朱梦圆, 等. 沉积物有效态磷对湖库富营养化的指示及适用性[J]. 环境科学, 2019, 40(9): 4023-4032.
[27] 金晓丹, 吴昊, 陈志明, 等. 长江河口水库沉积物磷形态、吸附和释放特性[J]. 环境科学, 2015, 36(2): 448-456.
[28] RAHMAN S, NAVARATHNA C M, KRISHNA D N, et al. High capacity aqueous phosphate reclamation using Fe/Mg-layered double hydroxide (LDH) dispersed on biochar[J]. Journal of Colloid and Interface Science, 2021, 597: 182-195. doi: 10.1016/j.jcis.2021.03.114
[29] WANG G R, JIN Z L, ZHANG W X. Ostensibly phosphatized NiAl LDHs nanoflowers with remarkable charge storage property for asymmetric supercapacitors[J]. Journal of Colloid and Interface Science, 2020, 577: 115-126. doi: 10.1016/j.jcis.2020.05.032
[30] WANG P, DU M L, ZHU H, et al. Structure regulation of silica nanotubes and their adsorption behaviors for heavy metal ions: pH effect, kinetics, isotherms and mechanism[J]. Journal of Hazardous Materials, 2015, 286: 533-544. doi: 10.1016/j.jhazmat.2014.12.034
[31] PENG X M, LUO W D, WANG M, et al. Insights into the adsorption mechanism of carbon cellulose fiber loaded globular flowers bimetallic layered double hydroxide for efficiency pollutant removal[J]. Journal of Molecular Liquids, 2019, 290: 111201. doi: 10.1016/j.molliq.2019.111201
[32] CHEN H Y, LU C, YANG H M. Lanthanum compounds-modified rectorite composites for highly efficient phosphate removal from wastewater[J]. Applied Clay Science, 2020, 199: 105875. doi: 10.1016/j.clay.2020.105875
[33] ZHANG X L, GUO L, HUANG H L, et al. Removal of phosphorus by the core-shell bio-ceramic/Zn-layered double hydroxides (LDHs) composites for municipal wastewater treatment in constructed rapid infiltration system[J]. Water Research, 2016, 96: 280-291. doi: 10.1016/j.watres.2016.03.063
[34] ROBB M, GREENOP B, GOSS Z, et al. Application of PhoslockTM, an innovative phosphorus binding clay, to two Western Australian waterways: Preliminary findings[J]. Hydrobiologia, 2003, 494(1/2/3): 237-243.
[35] 陈小燕, 刘键熙, 苏玉萍, 等. 两种锁磷剂锁磷效果对比研究[J]. 福建师范大学学报(自然科学版), 2016, 32(4): 56-60.
[36] 朱广伟, 李静, 朱梦圆, 等. 锁磷剂对杭州西湖底泥磷释放的控制效果[J]. 环境科学, 2017, 38(4): 1451-1459.
[37] 余先旭, 孙珮石, 朱宝平, 等. 锁磷剂(Phoslock)对滇池水体的除磷试验研究[J]. 贵州环保科技, 2006(1): 6-9.
[38] SONDERGAARD M, JENSEN J P, JEPPESEN E. Role of sediment and internal loading of phosphorus in shallow lakes[J]. Hydrobiologia, 2003, 506(1/2/3): 135-145.
[39] 蔡顺智, 李大鹏, 王忍, 等. 多重扰动对湖泊内源磷迁移转化的影响[J]. 环境科学, 2016, 37(11): 4203-4211.
[40] 高湘, 李妍, 何怡. 湖泊底泥磷释放及磷形态变化[J]. 环境工程学报, 2015, 9(7): 3350-3354. doi: 10.12030/j.cjee.20150745