[1] PAULA FAGUNDES A, FELIPE VIANA da SILVA A, BUENO de MORAIS B, et al. A novel application of bentonite modified with copper ions in the tetracycline adsorption: An experimental design study [J]. Materials Letters, 2021, 291: 129552. doi: 10.1016/j.matlet.2021.129552
[2] LIU H D, XU G R, LI G B. Preparation of porous biochar based on pharmaceutical sludge activated by NaOH and its application in the adsorption of tetracycline [J]. Journal of Colloid and Interface Science, 2021, 587: 271-278. doi: 10.1016/j.jcis.2020.12.014
[3] SHI Z, ZHANG Y, SHEN X F, et al. Fabrication of g-C3N4/BiOBr heterojunctions on carbon fibers as weaveable photocatalyst for degrading tetracycline hydrochloride under visible light [J]. Chemical Engineering Journal, 2020, 386: 124010. doi: 10.1016/j.cej.2020.124010
[4] DEBNATH B, MAJUMDAR M, BHOWMIK M, et al. The effective adsorption of tetracycline onto zirconia nanoparticles synthesized by novel microbial green technology [J]. Journal of Environmental Management, 2020, 261: 110235. doi: 10.1016/j.jenvman.2020.110235
[5] 韩爽, 肖鹏飞. 过硫酸盐活化技术在四环素类抗生素降解中的应用进展 [J]. 环境化学, 2021, 40(9): 2873-2883. doi: 10.7524/j.issn.0254-6108.2020052401 HAN S, XIAO P F. Application progress of persulfate activation technology in degradation of tetracycline antibiotics [J]. Environmental Chemistry, 2021, 40(9): 2873-2883(in Chinese). doi: 10.7524/j.issn.0254-6108.2020052401
[6] QIAO D S, LI Z H, DUAN J Y, et al. Adsorption and photocatalytic degradation mechanism of magnetic graphene oxide/ZnO nanocomposites for tetracycline contaminants [J]. Chemical Engineering Journal, 2020, 400: 125952. doi: 10.1016/j.cej.2020.125952
[7] XIA J, GAO Y X, YU G. Tetracycline removal from aqueous solution using zirconium-based metal-organic frameworks (Zr-MOFs) with different pore size and topology: Adsorption isotherm, kinetic and mechanism studies [J]. Journal of Colloid and Interface Science, 2021, 590: 495-505. doi: 10.1016/j.jcis.2021.01.046
[8] CHEN Y J, LI J N, WANG F H, et al. Adsorption of tetracyclines onto polyethylene microplastics: A combined study of experiment and molecular dynamics simulation [J]. Chemosphere, 2021, 265: 129133. doi: 10.1016/j.chemosphere.2020.129133
[9] LIU G M, ZHENG S R, YIN D Q, et al. Adsorption of aqueous alkylphenol ethoxylate surfactants by mesoporous carbon CMK-3 [J]. Journal of Colloid and Interface Science, 2006, 302(1): 47-53. doi: 10.1016/j.jcis.2006.06.006
[10] KILDUFF J E, KARANFIL T, CHIN Y P, et al. Adsorption of natural organic polyelectrolytes by activated carbon: A size-exclusion chromatography study [J]. Environmental Science & Technology, 1996, 30(4): 1336-1343.
[11] YANG J, DOU Y P, YANG H M, et al. A novel porous carbon derived from CO2 for high-efficient tetracycline adsorption: Behavior and mechanism [J]. Applied Surface Science, 2021, 538: 148110. doi: 10.1016/j.apsusc.2020.148110
[12] KUHN P, ANTONIETTI M, THOMAS A. Porous, covalent triazine-based frameworks prepared by ionothermal synthesis [J]. Angewandte Chemie International Edition, 2008, 47(18): 3450-3453. doi: 10.1002/anie.200705710
[13] KUHN P, KRÜGER K, THOMAS A, et al. “Everything is surface”: Tunable polymer organic frameworks with ultrahigh dye sorption capacity [J]. Chemical Communications, 2008(44): 5815. doi: 10.1039/b814254h
[14] KUHN P, THOMAS A, ANTONIETTI M. Toward tailorable porous organic polymer networks: A high-temperature dynamic polymerization scheme based on aromatic nitriles [J]. Macromolecules, 2009, 42(1): 319-326. doi: 10.1021/ma802322j
[15] CHAN-THAW C E, VILLA A, KATEKOMOL P, et al. Covalent triazine framework as catalytic support for liquid phase reaction [J]. Nano Letters, 2010, 10(2): 537-541. doi: 10.1021/nl904082k
[16] LI Y J, ZHENG S H, LIU X, et al. Conductive microporous covalent triazine-based framework for high-performance electrochemical capacitive energy storage [J]. Angewandte Chemie (International Ed. in English), 2018, 57(27): 7992-7996. doi: 10.1002/anie.201711169
[17] JENA H, KRISHNARAJ C, WANG G B, et al. Acetylacetone covalent triazine framework: An efficient carbon capture and storage material and a highly stable heterogeneous catalyst [J]. Chemistry of Materials, 2018, 30(12): 4102-4111. doi: 10.1021/acs.chemmater.8b01409
[18] LIU J L, ZONG E M, FU H Y, et al. Adsorption of aromatic compounds on porous covalent triazine-based framework [J]. Journal of Colloid and Interface Science, 2012, 372(1): 99-107. doi: 10.1016/j.jcis.2012.01.011
[19] LIU J L, CHEN H, ZHENG S R, et al. Adsorption of 4, 4'-(propane-2, 2-diyl)diphenol from aqueous solution by a covalent triazine-based framework [J]. Journal of Chemical & Engineering Data, 2013, 58(12): 3557-3562.
[20] LIU J L, CAO J J, CHEN H, et al. Adsorptive removal of humic acid from aqueous solution by micro- and mesoporous covalent triazine-based framework [J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2015, 481: 276-282.
[21] LIU J L, ZHOU D M, XU Z Y, et al. Adsorptive removal of pharmaceutical antibiotics from aqueous solution by porous covalent triazine frameworks [J]. Environmental Pollution, 2017, 226: 379-384. doi: 10.1016/j.envpol.2017.03.063
[22] ZHANG N, ISHAG A, LI Y, et al. Recent investigations and progress in environmental remediation by using covalent organic framework-based adsorption method: A review [J]. Journal of Cleaner Production, 2020, 277: 123360. doi: 10.1016/j.jclepro.2020.123360
[23] ZHANG W, LIANG F, LI C, et al. Microwave-enhanced synthesis of magnetic porous covalent triazine-based framework composites for fast separation of organic dye from aqueous solution [J]. Journal of Hazardous Materials, 2011, 186(2/3): 984-990.
[24] AN F X, LIU J L, XU Z Y, et al. Efficient removal of three dyes using porous covalent triazine frameworks: Adsorption mechanism and role of pore distribution [J]. Water Science and Technology, 2020, 82(12): 3023-3031. doi: 10.2166/wst.2020.550
[25] BOJDYS M J, JEROMENOK J, THOMAS A, et al. Rational extension of the family of layered, covalent, triazine-based frameworks with regular porosity [J]. Advanced Materials (Deerfield Beach, Fla. ), 2010, 22(19): 2202-2205. doi: 10.1002/adma.200903436
[26] JI L L, CHEN W, DUAN L, et al. Mechanisms for strong adsorption of tetracycline to carbon nanotubes: A comparative study using activated carbon and graphite as adsorbents [J]. Environmental Science & Technology, 2009, 43(7): 2322-2327.
[27] JI L L, CHEN W, BI J, et al. Adsorption of tetracycline on single-walled and multi-walled carbon nanotubes as affected by aqueous solution chemistry [J]. Environmental Toxicology and Chemistry, 2010, 29(12): 2713-2719. doi: 10.1002/etc.350
[28] TOLLS J. Sorption of veterinary pharmaceuticals in soils: A review [J]. Environmental Science & Technology, 2001, 35(17): 3397-3406.
[29] JI L L, LIU F L, XU Z Y, et al. Adsorption of pharmaceutical antibiotics on template-synthesized ordered micro- and mesoporous carbons [J]. Environmental Science & Technology, 2010, 44(8): 3116-3122.