[1] |
SOFEN L E, FURST A L. Perspective—electrochemical sensors to monitor endocrine disrupting pollutants [J]. Journal of the Electrochemical Society, 2019, 167(3): 037524.
|
[2] |
周文敏, 傅德黔, 孙宗光. 中国水中优先控制污染物黑名单的确定 [J]. 环境监测管理与技术, 1991, 3(4): 18-20.
ZHOU W M, FU D Q, SUN Z G. Identification of priority control of pollution blacklist in China [J]. The Administration and Technique of Environmental Monitoring, 1991, 3(4): 18-20(in Chinese).
|
[3] |
FIGUEIREDO E C, TARLEY C R T, KUBOTA L T, et al. On-line molecularly imprinted solid phase extraction for the selective spectrophotometric determination of catechol [J]. Microchemical Journal, 2007, 85(2): 290-296. doi: 10.1016/j.microc.2006.07.004
|
[4] |
MARRUBINI G, CALLERI E, COCCINI T, et al. Direct analysis of phenol, catechol and hydroquinone in human urine by coupled-column HPLC with fluorimetric detection [J]. Chromatographia, 2005, 62(1/2): 25-31.
|
[5] |
MOLDOVEANU S C, KISER M. Gas chromatography/mass spectrometry versus liquid chromatography/fluorescence detection in the analysis of phenols in mainstream cigarette smoke [J]. Journal of Chromatography A, 2007, 1141(1): 90-97. doi: 10.1016/j.chroma.2006.11.100
|
[6] |
HAN S Q, LIU B B, LIU Y, et al. Silver nanoparticle induced chemiluminescence of the hexacyanoferrate-fluorescein system, and its application to the determination of catechol [J]. Microchimica Acta, 2016, 183(2): 917-921. doi: 10.1007/s00604-015-1704-4
|
[7] |
ZHANG H, ZHAO J S, LIU H T, et al. Electrochemical determination of diphenols and their mixtures at the multiwall carbon nanotubes/poly (3-methylthiophene) modified glassy carbon electrode [J]. Microchimica Acta, 2010, 169(3/4): 277-282.
|
[8] |
LIN H G, GAN T, WU K B. Sensitive and rapid determination of catechol in tea samples using mesoporous Al-doped silica modified electrode [J]. Food Chemistry, 2009, 113(2): 701-704. doi: 10.1016/j.foodchem.2008.07.073
|
[9] |
ZHANG Y H, LEI Y N, LU H, et al. Electrochemical detection of bisphenols in food: A review [J]. Food Chemistry, 2021, 346: 128895. doi: 10.1016/j.foodchem.2020.128895
|
[10] |
SARIKA C, SHIVAKUMAR M S, SHIVAKUMARA C, et al. A novel amperometric catechol biosensor based on α-Fe2O3 nanocrystals-modified carbon paste electrode [J]. Artificial Cells, Nanomedicine, and Biotechnology, 2017, 45(3): 625-634. doi: 10.3109/21691401.2016.1167702
|
[11] |
BATISTA L C D, SANTOS T I S, SANTOS J E L, et al. Metal organic framework-235 (MOF-235) modified carbon paste electrode for catechol determination in water [J]. Electroanalysis, 2021, 33(1): 57-65. doi: 10.1002/elan.201800811
|
[12] |
REZA ABBASI A, MOSHTKOB A, SHAHABADI N, et al. Synthesis of nano zinc-based metal-organic frameworks under ultrasound irradiation in comparison with solvent-assisted linker exchange: Increased storage of N2 and CO2 [J]. Ultrasonics Sonochemistry, 2019, 59: 104729. doi: 10.1016/j.ultsonch.2019.104729
|
[13] |
LIU G Y, TIAN M S, LU M, et al. Preparation of magnetic MOFs for use as a solid-phase extraction absorbent for rapid adsorption of triazole pesticide residues in fruits juices and vegetables [J]. Journal of Chromatography B, 2021, 1166: 122500. doi: 10.1016/j.jchromb.2020.122500
|
[14] |
DAN-HARDI M, SERRE C, FROT T, et al. A new photoactive crystalline highly porous titanium(IV) dicarboxylate [J]. Journal of the American Chemical Society, 2009, 131(31): 10857-10859. doi: 10.1021/ja903726m
|
[15] |
PRATHAP M U A, GUNASEKARAN S. Rapid and scalable synthesis of zeolitic imidazole framework (ZIF-8) and its use for the detection of trace levels of nitroaromatic explosives [J]. Advanced Sustainable Systems, 2018, 2(10): 1800053. doi: 10.1002/adsu.201800053
|
[16] |
SHERINO B, MOHAMAD S, ABDUL HALIM S N, et al. Electrochemical detection of hydrogen peroxide on a new microporous Ni-metal organic framework material-carbon paste electrode [J]. Sensors and Actuators B:Chemical, 2018, 254: 1148-1156. doi: 10.1016/j.snb.2017.08.002
|
[17] |
LIU C S, LI J J, PANG H. Metal-organic framework-based materials as an emerging platform for advanced electrochemical sensing [J]. Coordination Chemistry Reviews, 2020, 410: 213222. doi: 10.1016/j.ccr.2020.213222
|
[18] |
LIU S Y, LAI C, LIU X G, et al. Metal-organic frameworks and their derivatives as signal amplification elements for electrochemical sensing [J]. Coordination Chemistry Reviews, 2020, 424: 213520. doi: 10.1016/j.ccr.2020.213520
|
[19] |
LI Z, ZHU M S. Detection of pollutants in water bodies: Electrochemical detection or photo-electrochemical detection? [J]. Chemical Communications, 2020, 56(93): 14541-14552. doi: 10.1039/D0CC05709F
|
[20] |
WANG H L, HU Q Q, MENG Y, et al. Efficient detection of hazardous catechol and hydroquinone with MOF-rGO modified carbon paste electrode [J]. Journal of Hazardous Materials, 2018, 353: 151-157. doi: 10.1016/j.jhazmat.2018.02.029
|
[21] |
MUELLER U, SCHUBERT M, TEICH F, et al. Metal–organic frameworks—prospective industrial applications [J]. J Mater Chem, 2006, 16(7): 626-636. doi: 10.1039/B511962F
|
[22] |
QIU L G, LI Z Q, WU Y, et al. Facile synthesis of nanocrystals of a microporous metal-organic framework by an ultrasonic method and selective sensing of organoamines [J]. Chemical Communications (Cambridge, England), 2008(31): 3642-3644. doi: 10.1039/b804126a
|
[23] |
SENTHIL KUMAR R, SENTHIL KUMAR S, ANBU KULANDAINATHAN M. Efficient electrosynthesis of highly active Cu3(BTC)2-MOF and its catalytic application to chemical reduction [J]. Microporous and Mesoporous Materials, 2013, 168: 57-64. doi: 10.1016/j.micromeso.2012.09.028
|
[24] |
ZHOU J, LI X, YANG L L, et al. The Cu-MOF-199/single-walled carbon nanotubes modified electrode for simultaneous determination of hydroquinone and catechol with extended linear ranges and lower detection limits [J]. Analytica Chimica Acta, 2015, 899: 57-65. doi: 10.1016/j.aca.2015.09.054
|
[25] |
TU X L, XIE Y, MA X, et al. Highly stable reduced graphene oxide-encapsulated Ce-MOF composite as sensing material for electrochemically detecting dichlorophen [J]. Journal of Electroanalytical Chemistry, 2019, 848: 113268. doi: 10.1016/j.jelechem.2019.113268
|
[26] |
张婷. 电化学法合成Zr-MOFs及其检测对苯二酚性能研究[D]. 哈尔滨: 哈尔滨理工大学, 2020.
ZHANG T. Study on electrochemical synthesis of Zr-MOFs and its performance in detecting hydroquinone[D]. Harbin: Harbin University of Science and Technology, 2020 (in Chinese)
|
[27] |
ZHANG T, WEI J Z, SUN X J, et al. Continuous and rapid synthesis of UiO-67 by electrochemical methods for the electrochemical detection of hydroquinone [J]. Inorganic Chemistry, 2020, 59(13): 8827-8835. doi: 10.1021/acs.inorgchem.0c00580
|
[28] |
DONG S Y, LI Z J, FU Y L, et al. Bimetal-organic framework Cu-Ni-BTC and its derivative CuO@NiO: Construction of three environmental small-molecule electrochemical sensors [J]. Journal of Electroanalytical Chemistry, 2020, 858: 113785. doi: 10.1016/j.jelechem.2019.113785
|
[29] |
ZHANG T, WEI J Z, SUN X J, et al. Rapid synthesis of UiO-66 by means of electrochemical cathode method with electrochemical detection of 2, 4, 6-TCP [J]. Inorganic Chemistry Communications, 2020, 111: 107671. doi: 10.1016/j.inoche.2019.107671
|
[30] |
HU P, ZHU X M, LUO X H, et al. Cathodic electrodeposited Cu-BTC MOFs assembled from Cu(II) and trimesic acid for electrochemical determination of bisphenol A [J]. Microchimica Acta, 2020, 187(2): 145. doi: 10.1007/s00604-020-4124-z
|
[31] |
BRONDANI D, ZAPP E, DA SILVA HEYING R, et al. Copper-based metal-organic framework applied in the development of an electrochemical biomimetic sensor for catechol determination [J]. Electroanalysis, 2017, 29(12): 2810-2817. doi: 10.1002/elan.201700509
|
[32] |
SCHUBERT D M, VISI M Z, KNOBLER C B. Acid-catalyzed synthesis of zinc imidazolates and related bimetallic metal-organic framework compounds [J]. Main Group Chemistry, 2008, 7(4): 311-322. doi: 10.1080/10241220902750928
|
[33] |
HUANG X Z, HUANG D H, CHEN J Y, et al. Fabrication of novel electrochemical sensor based on bimetallic Ce-Ni-MOF for sensitive detection of bisphenol A [J]. Analytical and Bioanalytical Chemistry, 2020, 412(4): 849-860. doi: 10.1007/s00216-019-02282-3
|
[34] |
WANG Y, CHEN H H, HU X Y, et al. Highly stable and ultrasensitive chlorogenic acid sensor based on metal-organic frameworks/titanium dioxide nanocomposites [J]. The Analyst, 2016, 141(15): 4647-4653. doi: 10.1039/C6AN00727A
|
[35] |
CAO Q, XIAO Y S, LIU N, et al. Synthesis of Yolk/Shell heterostructures MOF@MOF as biomimetic sensing platform for catechol detection [J]. Sensors and Actuators B:Chemical, 2021, 329: 129133. doi: 10.1016/j.snb.2020.129133
|
[36] |
MOLLARASOULI F, KURBANOGLU S, ASADPOUR-ZEYNALI K, et al. Preparation of porous Cu metal organic framework/ZnTe nanorods/Au nanoparticles hybrid platform for nonenzymatic determination of catechol [J]. Journal of Electroanalytical Chemistry, 2020, 856: 113672. doi: 10.1016/j.jelechem.2019.113672
|
[37] |
XU C X, LIU L B, WU C, et al. Unique 3D heterostructures assembled by quasi-2D Ni-MOF and CNTs for ultrasensitive electrochemical sensing of bisphenol A [J]. Sensors and Actuators B:Chemical, 2020, 310: 127885. doi: 10.1016/j.snb.2020.127885
|
[38] |
KıRANŞAN K D, TOPÇU E. Graphene paper with sharp-edged nanorods of Fe–CuMOF as an excellent electrode for the simultaneous detection of catechol and resorcinol [J]. Electroanalysis, 2019, 31(12): 2518-2529. doi: 10.1002/elan.201900352
|
[39] |
LI J, XIA J F, ZHANG F F, et al. An electrochemical sensor based on copper-based metal-organic frameworks-graphene composites for determination of dihydroxybenzene isomers in water [J]. Talanta, 2018, 181: 80-86. doi: 10.1016/j.talanta.2018.01.002
|
[40] |
YE Z, WANG Q W, QIAO J T, et al. In situ synthesis of sandwich MOFs on reduced graphene oxide for electrochemical sensing of dihydroxybenzene isomers [J]. The Analyst, 2019, 144(6): 2120-2129. doi: 10.1039/C8AN02307G
|
[41] |
LI B, MA J G, CHENG P. Integration of metal nanoparticles into metal-organic frameworks for composite catalysts: Design and synthetic strategy [J]. Small (Weinheim an Der Bergstrasse, Germany), 2019, 15(32): 1804849. doi: 10.1002/smll.201804849
|
[42] |
YANG Y Z, WANG Q X, QIU W W, et al. Covalent immobilization of Cu3(btc)2 at chitosan-electroreduced graphene oxide hybrid film and its application for simultaneous detection of dihydroxybenzene isomers [J]. The Journal of Physical Chemistry C, 2016, 120(18): 9794-9803. doi: 10.1021/acs.jpcc.6b01574
|
[43] |
XIE Y, TU X L, MA X, et al. In-situ synthesis of hierarchically porous polypyrrole@ZIF-8/graphene aerogels for enhanced electrochemical sensing of 2, 2-methylenebis (4-chlorophenol) [J]. Electrochimica Acta, 2019, 311: 114-122. doi: 10.1016/j.electacta.2019.04.132
|
[44] |
WANG X, SHI Y R, SHAN J J, et al. Electrochemical sensor for determination of bisphenol A based on MOF-reduced graphene oxide composites coupled with cetyltrimethylammonium bromide signal amplification [J]. Ionics, 2020, 26(6): 3135-3146. doi: 10.1007/s11581-019-03260-6
|
[45] |
石亚茹. 构建MOFs电化学传感器检测酚类污染物的研究[D]. 大连: 大连理工大学, 2020.
SHI Y R. Construction of electrochemical sensor based on MOFs for the detection of phenolic contaminants[D]. Dalian, China: Dalian University of Technology, 2020 (in Chinese).
|
[46] |
WANG X, LU X B, WU L D, et al. 3D metal-organic framework as highly efficient biosensing platform for ultrasensitive and rapid detection of bisphenol A [J]. Biosensors and Bioelectronics, 2015, 65: 295-301. doi: 10.1016/j.bios.2014.10.010
|
[47] |
ZHANG T, WANG L, GAO C W, et al. Hemin immobilized into metal-organic frameworks as an electrochemical biosensor for 2, 4, 6-trichlorophenol [J]. Nanotechnology, 2018, 29(7): 074003. doi: 10.1088/1361-6528/aaa26e
|
[48] |
ARUL P, HUANG S T, GOWTHAMAN N S K, et al. Electrocatalyst based on Ni-MOF intercalated with amino acid-functionalized graphene nanoplatelets for the determination of endocrine disruptor bisphenol A [J]. Analytica Chimica Acta, 2021, 1150: 338228. doi: 10.1016/j.aca.2021.338228
|
[49] |
YADAV D K, GANESAN V, MARKEN F, et al. Metal@MOF materials in electroanalysis: Silver-enhanced oxidation reactivity towards nitrophenols adsorbed into a zinc metal organic framework—Ag@MOF-5(Zn) [J]. Electrochimica Acta, 2016, 219: 482-491. doi: 10.1016/j.electacta.2016.10.009
|
[50] |
KıRANŞAN K D. Preparation and characterization of highly flexible, free-standing, three-dimensional and rough NiMOF/rGO composite paper electrode for determination of catechol [J]. ChemistrySelect, 2019, 4(21): 6488-6495. doi: 10.1002/slct.201900974
|
[51] |
DUAN J G, LI Y S, PAN Y C, ET AL. Metal-organic framework nanosheets: An emerging family of multifunctional 2D materials [J]. Coordination Chemistry Reviews, 2019, 395: 25-45. doi: 10.1016/j.ccr.2019.05.018
|
[52] |
FENG Y L, WANG F Y, WANG L Y, et al. In situ growth of MoS2 on three-dimensional porous carbon for sensitive electrochemical determination of bisphenol A [J]. Journal of Applied Electrochemistry, 2021, 51(2): 307-316. doi: 10.1007/s10800-020-01499-w
|
[53] |
XU X, ZHANG Q Q, YU Y K, et al. Naturally dried graphene aerogels with superelasticity and tunable poisson's ratio [J]. Advanced Materials, 2016, 28(41): 9223-9230. doi: 10.1002/adma.201603079
|
[54] |
LU M X, DENG Y J, LUO Y, et al. Graphene aerogel-metal-organic framework-based electrochemical method for simultaneous detection of multiple heavy-metal ions [J]. Analytical Chemistry, 2019, 91(1): 888-895. doi: 10.1021/acs.analchem.8b03764
|
[55] |
LUO G L, ZOU R Y, NIU Y Y, et al. Fabrication of ZIF-67@three-dimensional reduced graphene oxide aerogel nanocomposites and their electrochemical applications for rutin detection [J]. Journal of Pharmaceutical and Biomedical Analysis, 2020, 190: 113505. doi: 10.1016/j.jpba.2020.113505
|
[56] |
WEI W, HU H H, CHEN L L, et al. Size-controllable synthesis of zinc ferrite/reduced graphene oxide aerogels: Efficient electrochemical sensing of p-nitrophenol [J]. Nanotechnology, 2020, 31(43): 435706. doi: 10.1088/1361-6528/ab9e91
|
[57] |
YANG J, ZHAO F Q, ZENG B Z. One-step synthesis of a copper-based metal-organic framework-graphene nanocomposite with enhanced electrocatalytic activity [J]. RSC Advances, 2015, 5(28): 22060-22065. doi: 10.1039/C4RA16950F
|
[58] |
ZHANG T T, XING Y, SONG Y, et al. AuPt/MOF-graphene: A synergistic catalyst with surprisingly high peroxidase-like activity and its application for H2O2 detection [J]. Analytical Chemistry, 2019, 91(16): 10589-10595. doi: 10.1021/acs.analchem.9b01715
|
[59] |
SUN D P, YANG D C, WEI P, et al. One-step electrodeposition of silver nanostructures on 2D/3D metal-organic framework ZIF-67: Comparison and application in electrochemical detection of hydrogen peroxide [J]. ACS Applied Materials & Interfaces, 2020, 12(37): 41960-41968.
|
[60] |
ALVES N M, MANO J F. Chitosan derivatives obtained by chemical modifications for biomedical and environmental applications [J]. International Journal of Biological Macromolecules, 2008, 43(5): 401-414. doi: 10.1016/j.ijbiomac.2008.09.007
|
[61] |
QIAN K, FANG G Z, WANG S. A novel core-shell molecularly imprinted polymer based on metal-organic frameworks as a matrix [J]. Chemical Communications (Cambridge, England), 2011, 47(36): 10118-10120. doi: 10.1039/c1cc12935j
|
[62] |
AN H D, LI M M, GAO J, et al. Incorporation of biomolecules in Metal-Organic Frameworks for advanced applications [J]. Coordination Chemistry Reviews, 2019, 384: 90-106. doi: 10.1016/j.ccr.2019.01.001
|
[63] |
ZHAO F. Metal-organic frameworks-based electrochemical sensors and biosensors [J]. International Journal of Electrochemical Science, 2019: 5287-5304. doi: 10.20964/2019.06.63
|
[64] |
XU J Y, XIA J F, ZHANG F F, et al. An electrochemical sensor based on metal-organic framework-derived porous carbon with high degree of graphitization for electroanalysis of various substances [J]. Electrochimica Acta, 2017, 251: 71-80. doi: 10.1016/j.electacta.2017.08.114
|
[65] |
ZHANG M X, LI M S, WU W G, et al. MOF/PAN nanofiber-derived N-doped porous carbon materials with excellent electrochemical activity for the simultaneous determination of catechol and hydroquinone [J]. New Journal of Chemistry, 2019, 43(9): 3913-3920. doi: 10.1039/C9NJ00417C
|
[66] |
ZHENG S N, WU D, HUANG L M, et al. Isomorphic MOF-derived porous carbon materials as electrochemical sensor for simultaneous determination of hydroquinone and catechol [J]. Journal of Applied Electrochemistry, 2019, 49(6): 563-574. doi: 10.1007/s10800-019-01304-3
|
[67] |
CHEN H, WU X X, LAO C F, et al. MOF derived porous carbon modified rGO for simultaneous determination of hydroquinone and catechol [J]. Journal of Electroanalytical Chemistry, 2019, 835: 254-261. doi: 10.1016/j.jelechem.2019.01.027
|
[68] |
HUANG R M, LIAO D, CHEN S S, et al. A strategy for effective electrochemical detection of hydroquinone and catechol: Decoration of alkalization-intercalated Ti3C2 with MOF-derived N-doped porous carbon [J]. Sensors and Actuators B:Chemical, 2020, 320: 128386. doi: 10.1016/j.snb.2020.128386
|
[69] |
WANG M H, LIU Y K, YANG L Y, et al. Bimetallic metal-organic framework derived FeOx/TiO2 embedded in mesoporous carbon nanocomposite for the sensitive electrochemical detection of 4-nitrophenol [J]. Sensors and Actuators B:Chemical, 2019, 281: 1063-1072. doi: 10.1016/j.snb.2018.11.083
|
[70] |
XIAO L L, XU R Y, WANG F. Facile synthesis of CoxP decorated porous carbon microspheres for ultrasensitive detection of 4-nitrophenol [J]. Talanta, 2018, 179: 448-455. doi: 10.1016/j.talanta.2017.11.046
|
[71] |
WANG K D, WU C, WANG F, et al. MOF-derived CoPx nanoparticles embedded in nitrogen-doped porous carbon polyhedrons for nanomolar sensing of p-nitrophenol [J]. ACS Applied Nano Materials, 2018, 1(10): 5843-5853. doi: 10.1021/acsanm.8b01501
|
[72] |
WANG L B, HU X L. Recent advances in porous carbon materials for electrochemical energy storage [J]. Chemistry, an Asian Journal, 2018, 13(12): 1518-1529. doi: 10.1002/asia.201800553
|
[73] |
张辉, 郭玉鹏, 刘艳华, 等. 稻壳制备多孔炭对肌酐的吸附 [J]. 物理化学学报, 2007, 23(6): 825-829. doi: 10.3866/PKU.WHXB20070606
ZHANG H, GUO Y P, LIU Y H, et al. Adsorption of creatinine on porous carbon prepared from rice husk [J]. Acta Physico-Chimica Sinica, 2007, 23(6): 825-829(in Chinese). doi: 10.3866/PKU.WHXB20070606
|
[74] |
FIGUEIREDO J L. Functionalization of porous carbons for catalytic applications [J]. Journal of Materials Chemistry A, 2013, 1(33): 9351. doi: 10.1039/c3ta10876g
|
[75] |
TANG J, ZHENG S B, JIANG S X, et al. Metal organic framework(ZIF-67)-derived Co nanoparticles/N-doped carbon nanotubes composites for electrochemical detecting of tert-butyl hydroquinone [J]. Rare Metals, 2021, 40(2): 478-488. doi: 10.1007/s12598-020-01536-9
|
[76] |
LI L J, DAI P C, GU X, et al. High oxygen reduction activity on a metal-organic framework derived carbon combined with high degree of graphitization and pyridinic-N dopants [J]. Journal of Materials Chemistry, A. Materials for Energy and Sustainability, 2017, 5(2): 789-795. doi: 10.1039/C6TA08016B
|
[77] |
ANASORI B, LUKATSKAYA M R, GOGOTSI Y. 2D metal carbides and nitrides (MXenes) for energy storage [J]. Nature Reviews Materials, 2017, 2: 16098. doi: 10.1038/natrevmats.2016.98
|
[78] |
WANG J J, ZHAO J H, YANG J, et al. An electrochemical sensor based on MOF-derived NiO@ZnO hollow microspheres for isoniazid determination [J]. Microchimica Acta, 2020, 187(7): 380. doi: 10.1007/s00604-020-04305-8
|
[79] |
ASSI H, MOUCHAHAM G, STEUNOU N, et al. Titanium coordination compounds: From discrete metal complexes to metal–organic frameworks [J]. Chemical Society Reviews, 2017, 46(11): 3431-3452. doi: 10.1039/C7CS00001D
|
[80] |
YUAN S, BO X J, GUO L P. In-situ insertion of multi-walled carbon nanotubes in the Fe3O4/N/C composite derived from iron-based metal-organic frameworks as a catalyst for effective sensing acetaminophen and metronidazole [J]. Talanta, 2019, 193: 100-109. doi: 10.1016/j.talanta.2018.09.065
|
[81] |
WANG S Y, ZHANG X H, HUANG J L, et al. High-performance non-enzymatic catalysts based on 3D hierarchical hollow porous Co3O4 nanododecahedras in situ decorated on carbon nanotubes for glucose detection and biofuel cell application [J]. Analytical and Bioanalytical Chemistry, 2018, 410(7): 2019-2029. doi: 10.1007/s00216-018-0875-3
|
[82] |
WANG X G, LI W, XIONG D H, et al. Bifunctional nickel phosphide nanocatalysts supported on carbon fiber paper for highly efficient and stable overall water splitting [J]. Advanced Functional Materials, 2016, 26(23): 4067-4077. doi: 10.1002/adfm.201505509
|
[83] |
ZHANG L J, YANG Y M, ZIAEE M A, et al. Nanohybrid of carbon quantum dots/molybdenum phosphide nanoparticle for efficient electrochemical hydrogen evolution in alkaline medium [J]. ACS Applied Materials & Interfaces, 2018, 10(11): 9460-9467.
|
[84] |
SHI Y M, ZHANG B. Recent advances in transition metal phosphide nanomaterials: Synthesis and applications in hydrogen evolution reaction [J]. Chemical Society Reviews, 2016, 45(6): 1529-1541. doi: 10.1039/C5CS00434A
|
[85] |
ZHOU Q Q, WANG J Y, GUO F Y, et al. Self-supported bimetallic phosphide-carbon nanostructures derived from metal-organic frameworks as bifunctional catalysts for highly efficient water splitting [J]. Electrochimica Acta, 2019, 318: 244-251. doi: 10.1016/j.electacta.2019.06.082
|
[86] |
CHENG N Y, REN L, XU X, et al. Recent development of zeolitic imidazolate frameworks (ZIFs) derived porous carbon based materials as electrocatalysts [J]. Advanced Energy Materials, 2018, 8(25): 1801257. doi: 10.1002/aenm.201801257
|
[87] |
SUN Q Q, WANG M, BAO S J, et al. Analysis of cobalt phosphide (CoP) nanorods designed for non-enzyme glucose detection [J]. The Analyst, 2016, 141(1): 256-260. doi: 10.1039/C5AN01928A
|
[88] |
LIU D N, CHEN T, ZHU W X, et al. Cobalt phosphide nanowires: An efficient electrocatalyst for enzymeless hydrogen peroxide detection [J]. Nanotechnology, 2016, 27(33): 33LT01. doi: 10.1088/0957-4484/27/33/33LT01
|
[89] |
LIANG Z Q, HUO R J, YIN S H, et al. Eco-efficient synthesis route of carbon-encapsulated transition metal phosphide with improved cycle stability for lithium-ion batteries [J]. Journal of Materials Chemistry A, 2014, 2(4): 921-925. doi: 10.1039/C3TA13879H
|
[90] |
ZHENG J L, ZHOU W, LIU T, et al. Homologous NiO//Ni2P nanoarrays grown on nickel foams: A well matched electrode pair with high stability in overall water splitting [J]. Nanoscale, 2017, 9(13): 4409-4418. doi: 10.1039/C6NR07953A
|
[91] |
CALLEJAS J F, READ C G, POPCZUN E J, et al. Nanostructured Co2P electrocatalyst for the hydrogen evolution reaction and direct comparison with morphologically equivalent CoP [J]. Chemistry of Materials, 2015, 27(10): 3769-3774. doi: 10.1021/acs.chemmater.5b01284
|
[92] |
WU X X, LAO C F, LI Y C, et al. Tunable synthesis of CoP and CoP2 decorated 3D carbon nanohybrids and the application of CoP2 decorated one in electrochemical detection of chloramphenicol in milk and honey [J]. Journal of the Electrochemical Society, 2018, 165(16): B916-B923. doi: 10.1149/2.1011816jes
|