[1] |
ZENG D B, YANG K, YU C L, et al. Phase transformation and microwave hydrothermal guided a novel double Z-scheme ternary vanadate heterojunction with highly efficient photocatalytic performance [J]. Applied Catalysis B:Environmental, 2018, 237: 449-463. doi: 10.1016/j.apcatb.2018.06.010
|
[2] |
ZENG D B, YU C L, FAN Q Z, et al. Theoretical and experimental research of novel fluorine doped hierarchical Sn3O4 microspheres with excellent photocatalytic performance for removal of Cr(VI) and organic pollutants [J]. Chemical Engineering Journal, 2020, 391: 123607. doi: 10.1016/j.cej.2019.123607
|
[3] |
YU C L, ZENG D B, FAN Q Z, et al. The distinct role of boron doping in Sn3O4 microspheres for synergistic removal of phenols and Cr(vi) in simulated wastewater [J]. Environmental Science:Nano, 2020, 7(1): 286-303. doi: 10.1039/C9EN00899C
|
[4] |
YE L Q, DENG Y, WANG L, et al. Bismuth-based photocatalysts for solar photocatalytic carbon dioxide conversion [J]. ChemSusChem, 2019, 12(16): 3671-3701. doi: 10.1002/cssc.201901196
|
[5] |
FANG K X, SHI L, YAO L Z, et al. Synthesis of novel magnetically separable Fe3O4/Bi12O17Cl2 photocatalyst with boosted visible-light photocatalytic activity [J]. Materials Research Bulletin, 2020, 129: 110888. doi: 10.1016/j.materresbull.2020.110888
|
[6] |
CHANG F, LEI B, ZHANG X Y, et al. The reinforced photocatalytic performance of binary-phased composites Bi-Bi12O17Cl2 fabricated by a facile chemical reduction protocol [J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2019, 572: 290-298. doi: 10.1016/j.colsurfa.2019.04.014
|
[7] |
YU C L, FAN C F, YU J C, et al. Preparation of bismuth oxyiodides and oxides and their photooxidation characteristic under visible/UV light irradiation [J]. Materials Research Bulletin, 2011, 46(1): 140-146. doi: 10.1016/j.materresbull.2010.08.013
|
[8] |
YU C L, HE H B, LIU X Q, et al. Novel SiO2 nanoparticle-decorated BiOCl nanosheets exhibiting high photocatalytic performances for the removal of organic pollutants [J]. Chinese Journal of Catalysis, 2019, 40(8): 1212-1221. doi: 10.1016/S1872-2067(19)63359-0
|
[9] |
CONTRERAS D, MELIN V, MÁRQUEZ K, et al. Selective oxidation of cyclohexane to cyclohexanol by BiOI under visible light: Role of the ratio (1 1 0)/(0 0 1) facet [J]. Applied Catalysis B:Environmental, 2019, 251: 17-24. doi: 10.1016/j.apcatb.2019.03.058
|
[10] |
LIU M Y, ZHENG Y F, SONG X C. Biomass assisted synthesis of 3D hierarchical structure BiOX(X cl, Br)-(CMC) with enhanced photocatalytic activity [J]. Journal of Nanoscience and Nanotechnology, 2019, 19(8): 5287-5294. doi: 10.1166/jnn.2019.16826
|
[11] |
BIELICKA-GIEŁDOŃ A, WILCZEWSKA P, MALANKOWSKA A, et al. Morphology, surface properties and photocatalytic activity of the bismuth oxyhalides semiconductors prepared by ionic liquid assisted solvothermal method [J]. Separation and Purification Technology, 2019, 217: 164-173. doi: 10.1016/j.seppur.2019.02.031
|
[12] |
ZHAO R, JIA Z H, LI T, et al. Concise fabrication of 3D rose-like BiOBrxI1−x with exceptional wide spectrum visible-light photocatalytic activity [J]. Inorganic Chemistry Communications, 2019, 101: 150-159. doi: 10.1016/j.inoche.2019.01.021
|
[13] |
MI Y W, LI H P, ZHANG Y F, et al. Synthesis of belt-like bismuth-rich bismuth oxybromide hierarchical nanostructures with high photocatalytic activities [J]. Journal of Colloid and Interface Science, 2019, 534: 301-311. doi: 10.1016/j.jcis.2018.09.038
|
[14] |
HAO L, HUANG H W, GUO Y X, et al. Bismuth oxychloride homogeneous phasejunction BiOCl/Bi12O17Cl2 with unselectively efficient photocatalytic activity and mechanism insight [J]. Applied Surface Science, 2017, 420: 303-312. doi: 10.1016/j.apsusc.2017.05.076
|
[15] |
XING Y L, WU D P, JIN X Y, et al. Enhanced photocatalytic activity of Bi24O31Br10 nanosheets by the photodeposition of Au nanoparticles [J]. Solid State Sciences, 2019, 95: 105921. doi: 10.1016/j.solidstatesciences.2019.06.010
|
[16] |
JIN X L, de LV C, ZHOU X, et al. A bismuth rich hollow Bi4O5Br2 photocatalyst enables dramatic CO2 reduction activity [J]. Nano Energy, 2019, 64: 103955. doi: 10.1016/j.nanoen.2019.103955
|
[17] |
WANG L, MIN X P, SUI X Y, et al. Facile construction of novel BiOBr/Bi12O17Cl2 heterojunction composites with enhanced photocatalytic performance [J]. Journal of Colloid and Interface Science, 2020, 560: 21-33. doi: 10.1016/j.jcis.2019.10.048
|
[18] |
ZHANG W D, DONG X A, JIA B, et al. 2D BiOCl/Bi12O17Cl2 nanojunction: Enhanced visible light photocatalytic NO removal and in situ DRIFTS investigation [J]. Applied Surface Science, 2018, 430: 571-577. doi: 10.1016/j.apsusc.2017.06.186
|
[19] |
ZHANG W D, DONG X A, LIANG Y, et al. Ag/AgCl nanoparticles assembled on BiOCl/Bi12O17Cl2 nanosheets: Enhanced plasmonic visible light photocatalysis and in situ DRIFTS investigation [J]. Applied Surface Science, 2018, 455: 236-243. doi: 10.1016/j.apsusc.2018.05.171
|
[20] |
CHANG F, WANG X F, LUO J R, et al. Ag/Bi12O17Cl2 composite: A case study of visible-light-driven plasmonic photocatalyst [J]. Molecular Catalysis, 2017, 427: 45-53. doi: 10.1016/j.molcata.2016.11.028
|
[21] |
WANG Y Z, HUANG X Y, WANG K Q, et al. Ag-modified ultrathin Bi12O17Cl2 nanosheets: Photo-assisted Ag exfoliation synthesis and enhanced photocatalytic performance [J]. Journal of Materials Chemistry A, 2018, 6(19): 9200-9208. doi: 10.1039/C8TA01403E
|
[22] |
LIU X Y, XING Y X, LIU Z L, et al. Enhanced photocatalytic activity of Bi12O17Cl2 preferentially oriented growth along [200] with various surfactants [J]. Journal of Materials Science, 2018, 53(20): 14217-14230. doi: 10.1007/s10853-018-2637-1
|
[23] |
DI J, ZHU C, JI M X, et al. Defect-rich Bi12 O17 Cl2 nanotubes self-accelerating charge separation for boosting photocatalytic CO2 reduction [J]. Angewandte Chemie (International Ed. in English), 2018, 57(45): 14847-14851. doi: 10.1002/anie.201809492
|
[24] |
CHANG F, WU F Y, YAN W J, et al. Oxygen-rich bismuth oxychloride Bi12O17Cl2 materials: Construction, characterization, and sonocatalytic degradation performance [J]. Ultrasonics Sonochemistry, 2019, 50: 105-113. doi: 10.1016/j.ultsonch.2018.09.005
|
[25] |
WANG D H, GAO G Q, ZHANG Y W, et al. Nanosheet-constructed porous BiOCl with dominant {001} facets for superior photosensitized degradation [J]. Nanoscale, 2012, 4(24): 7780-7785. doi: 10.1039/c2nr32533k
|
[26] |
YANG X H, LI Z, LIU G, et al. Ultra-thin anatase TiO2nanosheets dominated with {001} facets: Thickness-controlled synthesis, growth mechanism and water-splitting properties [J]. CrystEngComm, 2011, 13(5): 1378-1383. doi: 10.1039/C0CE00233J
|
[27] |
LI Q B, ZHAO X, YANG J, et al. Exploring the effects of nanocrystal facet orientations in g-C3N4/BiOCl heterostructures on photocatalytic performance [J]. Nanoscale, 2015, 7(45): 18971-18983. doi: 10.1039/C5NR05154A
|
[28] |
MYUNG Y, WU F, BANERJEE S, et al. Highly conducting, n-type Bi12O15Cl6 nanosheets with superlattice-like structure [J]. Chemistry of Materials, 2015, 27(22): 7710-7718. doi: 10.1021/acs.chemmater.5b03345
|
[29] |
HUANG H W, XIAO K, HE Y, et al. In situ assembly of BiOI@Bi12O17Cl2 p-n junction: Charge induced unique front-lateral surfaces coupling heterostructure with high exposure of BiOI{001}active facets for robust and nonselective photocatalysis [J]. Applied Catalysis B:Environmental, 2016, 199: 75-86. doi: 10.1016/j.apcatb.2016.06.020
|
[30] |
WU G J, ZHAO Y, LI Y W, et al. pH-dependent synthesis of iodine-deficient bismuth oxyiodide microstructures: Visible-light photocatalytic activity [J]. Journal of Colloid and Interface Science, 2018, 510: 228-236. doi: 10.1016/j.jcis.2017.09.053
|
[31] |
XU Z K, LIN S Y. Correction: Construction of AgCl/Ag/BiOCl with a concave-rhombicuboctahedron core–shell hierarchitecture and enhanced photocatalytic activity [J]. RSC Advances, 2017, 7(16): 9512. doi: 10.1039/C7RA90010D
|
[32] |
TIEN L C, LIN Y L, CHEN S Y. Synthesis and characterization of Bi12O17Cl2 nanowires obtained by chlorination of α-Bi2O3 nanowires [J]. Materials Letters, 2013, 113: 30-33. doi: 10.1016/j.matlet.2013.09.064
|
[33] |
ZHENG J J, CHANG F, JIAO M Z, et al. A visible-light-driven heterojuncted composite WO3/Bi12O17Cl2: Synthesis, characterization, and improved photocatalytic performance [J]. Journal of Colloid and Interface Science, 2018, 510: 20-31. doi: 10.1016/j.jcis.2017.07.119
|
[34] |
SONG Y H, HAO X L, DAI W L, et al. Aqueous synthesis and photocatalytic performance of Bi5O7I microflowers [J]. Nano, 2019, 14(4): 1950050. doi: 10.1142/S1793292019500504
|
[35] |
CAO S W, LI Y, ZHU B C, et al. Facet effect of Pd cocatalyst on photocatalytic CO2 reduction over g-C3N4 [J]. Journal of Catalysis, 2017, 349: 208-217. doi: 10.1016/j.jcat.2017.02.005
|
[36] |
LE S K, JIANG T S, LI Y W, et al. Highly efficient visible-light-driven mesoporous graphitic carbon nitride/ZnO nanocomposite photocatalysts [J]. Applied Catalysis B:Environmental, 2017, 200: 601-610. doi: 10.1016/j.apcatb.2016.07.027
|
[37] |
CHANG F, LUO J R, WANG X F, et al. Poly(vinyl pyrrolidone)-assisted hydrothermal synthesis and enhanced visible-light photocatalytic performance of oxygen-rich bismuth oxychlorides [J]. Journal of Colloid and Interface Science, 2015, 459: 136-145. doi: 10.1016/j.jcis.2015.08.023
|
[38] |
CHANG X F, YU G, HUANG J, et al. Enhancement of photocatalytic activity over NaBiO3/BiOCl composite prepared by an in situ formation strategy [J]. Catalysis Today, 2010, 153(3/4): 193-199.
|
[39] |
YE L Q, LIU J Y, GONG C Q, et al. Two different roles of metallic Ag on Ag/AgX/BiOX (X = cl, Br) visible light photocatalysts: Surface plasmon resonance and Z-scheme bridge [J]. ACS Catalysis, 2012, 2(8): 1677-1683. doi: 10.1021/cs300213m
|
[40] |
JIANG J, ZHAO K, XIAO X Y, et al. Synthesis and facet-dependent photoreactivity of BiOCl single-crystalline nanosheets [J]. Journal of the American Chemical Society, 2012, 134(10): 4473-4476. doi: 10.1021/ja210484t
|