[1] 向银萍. 纳米零价铁和纳米四氧化三铁强化污泥厌氧消化产气和抗性基因削减的研究[D]. 湖南: 湖南大学, 2020.
[2] 高超. 污泥深度脱水技术在市政污泥处理中的应用[J]. 环境与发展, 2020, 05(32): 98-99.
[3] 张树艳, 刘佳欣, 耿继光, 等. 基于堆肥的污泥预处理方法研究进展[J]. 应用化工, 2021, 50(7): 2008-2013. doi: 10.3969/j.issn.1671-3206.2021.07.056
[4] 程柳. 市政污泥中汞的地球化学特征与生态风险研究[D]. 焦作: 河南理工大学, 2018.
[5] 尚慧洁. 我国部分城市污泥中汞的形态分布研究[D]. 焦作: 河南理工大学, 2018.
[6] 汪恒,袁权.水稻根际土壤中汞的微生物循环过程[J/OL].地球与环境:1-9[2022-07-31].DOI:10.14050/j.cnki.1672-9250.2022.50.007.
[7] CUI H, ZHANG S, ZHAO M, et al. Parallel faction analysis combined with two-dimensional correlation spectroscopy reveal the characteristics of mercury-composting-derived dissolved organic matter interactions[J]. Journal of Hazardous Materials, 2020, 384: 121395. doi: 10.1016/j.jhazmat.2019.121395
[8] ZHANG X, SU C, LIU X, et al. Periodical changes of dissolved organic matter (DOM) properties induced by biochar application and its impact on downward migration of heavy metals under flood conditions[J]. Journal of Cleaner Production, 2020, 275: 123787. doi: 10.1016/j.jclepro.2020.123787
[9] 王鑫宇, 张曦, 丁京涛, 等. 生物炭对好氧发酵水溶性有机物及重金属形态的影响[J]. 农业环境科学学报, 2021, 40(11): 2372-2382. doi: 10.11654/jaes.2021-0684
[10] 付涛, 李翔, 上官华媛, 等. 电场促进畜禽粪便好氧堆肥中DOM演化的光谱学研究[J]. 环境科学学报, 2021, 41(4): 1465-1477.
[11] 何湘琳, 刘吉宝, 阴永光, 等. 硫酸盐对污泥高级厌氧消化过程中甲基汞迁移转化的影响[J]. 环境科学, 2020, 41(3): 1425-1431.
[12] LIU H, XU F, XIE Y, et al. Effect of modified coconut shell biochar on availability of heavy metals and biochemical characteristics of soil in multiple heavy metals contaminated soil[J]. Science of the Total Environment, 2018, 645: 702-709. doi: 10.1016/j.scitotenv.2018.07.115
[13] 程焱, 余亚伟, 张成, 等. 污泥堆肥及其利用过程汞的变化特征[J]. 环境化学, 2021, 40(7): 2226-2233. doi: 10.7524/j.issn.0254-6108.2020031201
[14] 何增明, 刘强, 谢桂先, 等. 好氧高温猪粪堆肥中重金属砷、铜、锌的形态变化及钝化剂的影响[J]. 应用生态学报, 2010, 21(10): 2659-2665.
[15] 李述贤, 郑旭东, 龚建军, 等. 利用氯化锌和硫改性玉米秸秆生物炭稳定汞污染土壤[J]. 环境工程学报, 2021, 15(4): 1403-1408. doi: 10.12030/j.cjee.202008083
[16] JANOWSKA B, SZYMANSKI K, SIDELKO R, et al. Assessment of mobility and bioavailability of mercury compounds in sewage sludge and composts[J]. Environmental Research, 2017, 156: 394-403. doi: 10.1016/j.envres.2017.04.005
[17] 余亚伟. 污泥堆肥与施用过程汞的变化特征及其对土壤和作物的影响[D]. 重庆: 西南大学, 2017.
[18] 谷春豪, 许怀凤, 仇广乐. 汞的微生物甲基化与去甲基化机理研究进展[J]. 环境化学, 2013, 32(6): 926-936.
[19] CASTRO L, DOMMERGUE A, LAROSE C, et al. A theoretical study of abiotic methylation reactions of gaseous elemental mercury by halogen-containing molecules[J]. The Journal of Physical Chemistry A, 2011, 115(22): 5602-5608. doi: 10.1021/jp200643n
[20] 张展华, 方清萱, 赵振宇, 等. 环境生物膜中的汞甲基化[J]. 环境化学, 2021, 40(9): 2605-2616. doi: 10.7524/j.issn.0254-6108.2021032204
[21] 中华人民共和国建设部. 城镇污水处理厂污泥处理稳定标准: CJ/T 510-2017[S]. 2017.
[22] 何李健, 尹军, 王争. 污泥好氧堆肥处理技术探讨[J]. 中国资源综合利用, 2014, 32(3): 30-33. doi: 10.3969/j.issn.1008-9500.2014.03.020
[23] 张思梦, 刘畅, 蒲志红. 生活垃圾好氧堆肥腐熟度评价标准[J]. 绿色科技, 2020(8): 112-113. doi: 10.3969/j.issn.1674-9944.2020.08.046
[24] 毛宇翔, 李涵, 职音, 等. 城市污泥好氧堆肥过程中DOM的光谱动态变化特征[J]. 安全与环境学报, 2021, 21(2): 794-803.
[25] CHEN W, WESTERHOFF P, LEENHEER J A, et al. Fluorescence excitation−emission matrix regional integration to quantify spectra for dissolved organic matter[J]. Environmental Science & Technology, 2003, 37(24): 5701-5710.
[26] 杜士林, 李强, 丁婷婷, 等. 沙颍河流域水体中溶解性有机质(DOM)的荧光光谱解析[J]. 环境化学, 2019, 38(9): 2027-2037. doi: 10.7524/j.issn.0254-6108.2019022602
[27] GIOVANELLA P, CABRAL L, BENTO F M, et al. Mercury (II) removal by resistant bacterial isolates and mercuric (II) reductase activity in a new strain of Pseudomonas sp. B50A[J]. New Biotechnology, 2016, 33(1): 216-223. doi: 10.1016/j.nbt.2015.05.006
[28] BISSWANGER, H. Enzyme Kinetics–Principles and Methods[M]. Weigenheim: Wiley-VCH Verlag GmbH, Germany, 2002: 268.
[29] 王燕, 孙涛, 王训, 等. 根际土壤中汞甲基化与去甲基化作用双同位素示踪研究[J]. 环境科学学报, 2020, 40(1): 269-275.
[30] HU H, XI B, TAN W. Effects of sulfur-rich biochar amendment on microbial methylation of mercury in rhizosphere paddy soil and methylmercury accumulation in rice[J]. Environmental Pollution, 2021, 286: 117290. doi: 10.1016/j.envpol.2021.117290
[31] 李艳, 魏丹, 王伟, 等. 秸秆-牛粪发酵过程中溶解性有机质的荧光光谱特征[J]. 光谱学与光谱分析, 2021, 41(9): 2846-2852.