[1] KONG D Y, LIANG B, YUN H, et al. Cathodic degradation of antibiotics: Characterization and pathway analysis [J]. Water Research, 2015, 72: 281-292. doi: 10.1016/j.watres.2015.01.025
[2] YANG Z T, LI L L, YU H Y, et al. Facile synthesis of highly crystalline g-C3N4 nanosheets with remarkable visible light photocatalytic activity for antibiotics removal [J]. Chemosphere, 2021, 271: 129503. doi: 10.1016/j.chemosphere.2020.129503
[3] KIM K S, KAM S K, MOK Y S. Elucidation of the degradation pathways of sulfonamide antibiotics in a dielectric barrier discharge plasma system [J]. Chemical Engineering Journal, 2015, 271: 31-42. doi: 10.1016/j.cej.2015.02.073
[4] PAN Y W, ZHANG Y, ZHOU M H, et al. Enhanced removal of antibiotics from secondary wastewater effluents by novel UV/pre-magnetized Fe0/H2O2 process [J]. Water Research, 2019, 153: 144-159. doi: 10.1016/j.watres.2018.12.063
[5] ZHOU L, LIMBU S M, SHEN M L, et al. Environmental concentrations of antibiotics impair zebrafish gut health [J]. Environmental Pollution, 2018, 235: 245-254. doi: 10.1016/j.envpol.2017.12.073
[6] GAO S S, ZHAO Z W, XU Y P, et al. Oxidation of sulfamethoxazole (SMX) by chlorine, ozone and permanganate—A comparative study [J]. Journal of Hazardous Materials, 2014, 274: 258-269. doi: 10.1016/j.jhazmat.2014.04.024
[7] SONG Y L, TIAN J Y, GAO S S, et al. Photodegradation of sulfonamides by g-C3N4 under visible light irradiation: Effectiveness, mechanism and pathways [J]. Applied Catalysis B:Environmental, 2017, 210: 88-96. doi: 10.1016/j.apcatb.2017.03.059
[8] 袁丹, 孙蕾, 万顺刚, 等. 液化黑藻基炭微球水热制备及吸附诺氟沙星的过程与机制 [J]. 环境化学, 2017, 36(6): 1262-1271. doi: 10.7524/j.issn.0254-6108.2017.06.2016101305 YUAN D, SUN L, WAN S G, et al. Preparation of carbon spheres derived from liquefied Hydrilla verticillata by hydrothermal fabrication and their adsorption performance and mechanism for norfloxcin [J]. Environmental Chemistry, 2017, 36(6): 1262-1271(in Chinese). doi: 10.7524/j.issn.0254-6108.2017.06.2016101305
[9] 杨梖, 刘颢, 俞映倞, 等. 高级氧化技术去除水体中抗性基因污染的研究进展 [J]. 环境化学, 2021, 40(4): 1263-1273. doi: 10.7524/j.issn.0254-6108.2019110302 YANG B, LIU H, YU Y L, et al. A review: Elimination of antibiotic resistance genes in water by advanced oxidation progress [J]. Environmental Chemistry, 2021, 40(4): 1263-1273(in Chinese). doi: 10.7524/j.issn.0254-6108.2019110302
[10] 钟雪晴, 朱雅莉, 王玉娇, 等. 含抗生素废水的微藻处理技术及其进展 [J]. 化工进展, 2021, 40(4): 2308-2317. ZHONG X Q, ZHU Y L, WANG Y J, et al. Progress on antibiotic wastewater treatment by microalgae [J]. Chemical Industry and Engineering Progress, 2021, 40(4): 2308-2317(in Chinese).
[11] 王震, 任学昌, 郭梅, 等. g-C3N4的硫酸铵-尿素混合法制备及其可见光催化性能 [J]. 环境化学, 2020, 39(10): 2887-2896. doi: 10.7524/j.issn.0254-6108.2019073013 WANG Z, REN X C, GUO M, et al. Preparation of g-C3N4 by ammonium sulfate-urea mixed method and its visible light photocatalytic performance [J]. Environmental Chemistry, 2020, 39(10): 2887-2896(in Chinese). doi: 10.7524/j.issn.0254-6108.2019073013
[12] ZHAO C X, CHEN Z P, XU J S, et al. Probing supramolecular assembly and charge carrier dynamics toward enhanced photocatalytic hydrogen evolution in 2D graphitic carbon nitride nanosheets [J]. Applied Catalysis B:Environmental, 2019, 256: 117867. doi: 10.1016/j.apcatb.2019.117867
[13] PAN C S, XU J, WANG Y J, et al. Dramatic activity of C3N4/BiPO4 photocatalyst with core/shell structure formed by self-assembly [J]. Advanced Functional Materials, 2012, 22(7): 1518-1524. doi: 10.1002/adfm.201102306
[14] CHAN M H, LIU R S, HSIAO M. Graphitic carbon nitride-based nanocomposites and their biological applications: A review [J]. Nanoscale, 2019, 11(32): 14993-15003. doi: 10.1039/C9NR04568F
[15] RHIMI B, WANG C Y, BAHNEMANN D W. Latest progress in g-C3N4 based heterojunctions for hydrogen production via photocatalytic water splitting: A mini review [J]. Journal of Physics:Energy, 2020, 2(4): 042003. doi: 10.1088/2515-7655/abb782
[16] JO W K, LEE J Y, SELVAM N C S. Synthesis of MoS2 nanosheets loaded ZnO-g-C3N4 nanocomposites for enhanced photocatalytic applications [J]. Chemical Engineering Journal, 2016, 289: 306-318. doi: 10.1016/j.cej.2015.12.080
[17] PENG W C, LI X Y. Synthesis of MoS2/g-C3N4 as a solar light-responsive photocatalyst for organic degradation [J]. Catalysis Communications, 2014, 49: 63-67. doi: 10.1016/j.catcom.2014.02.008
[18] JO W K, SELVAM N C S. Z-scheme CdS/g-C3N4 composites with RGO as an electron mediator for efficient photocatalytic H2 production and pollutant degradation [J]. Chemical Engineering Journal, 2017, 317: 913-924. doi: 10.1016/j.cej.2017.02.129
[19] ANDRADY A L. Microplastics in the marine environment [J]. Marine Pollution Bulletin, 2011, 62(8): 1596-1605. doi: 10.1016/j.marpolbul.2011.05.030
[20] EERKES-MEDRANO D, THOMPSON R C, ALDRIDGE D C. Microplastics in freshwater systems: A review of the emerging threats, identification of knowledge gaps and prioritisation of research needs [J]. Water Research, 2015, 75: 63-82. doi: 10.1016/j.watres.2015.02.012
[21] LIU X, LI C S, ZHANG Y, et al. Simultaneous photodegradation of multi-herbicides by oxidized carbon nitride: Performance and practical application [J]. Applied Catalysis B:Environmental, 2017, 219: 194-199. doi: 10.1016/j.apcatb.2017.07.007
[22] ALIMI O S, FARNER BUDARZ J, HERNANDEZ L M, et al. Microplastics and nanoplastics in aquatic environments: Aggregation, deposition, and enhanced contaminant transport [J]. Environmental Science & Technology, 2018, 52(4): 1704-1724.
[23] HUMMERS W S J, OFFEMAN R E. Preparation of graphitic oxide [J]. Journal of the American Chemical Society, 1958, 80(6): 1339. doi: 10.1021/ja01539a017
[24] LI X F, ZHANG J, SHEN L H, et al. Preparation and characterization of graphitic carbon nitride through pyrolysis of melamine [J]. Applied Physics A, 2009, 94(2): 387-392. doi: 10.1007/s00339-008-4816-4
[25] HONG J D, XIA X Y, WANG Y S, et al. Mesoporous carbon nitride with in situ sulfur doping for enhanced photocatalytic hydrogen evolution from water under visible light [J]. Journal of Materials Chemistry, 2012, 22(30): 15006. doi: 10.1039/c2jm32053c
[26] YANG W, WANG Y. Enhanced electron and mass transfer flow-through cell with C3N4-MoS2 supported on three-dimensional graphene photoanode for the removal of antibiotic and antibacterial potencies in ampicillin wastewater [J]. Applied Catalysis B:Environmental, 2021, 282: 119574. doi: 10.1016/j.apcatb.2020.119574
[27] WANG H W, HU Z A, CHANG Y Q, et al. Preparation of reduced graphene oxide/cobalt oxide composites and their enhanced capacitive behaviors by homogeneous incorporation of reduced graphene oxide sheets in cobalt oxide matrix [J]. Materials Chemistry and Physics, 2011, 130(1/2): 672-679.