[1] DIEBEL M W, MAXTED J T, ROBERTSON D M, et al. Landscape planning for agricultural nonpoint source pollution reduction III: Assessing phosphorus and sediment reduction potential [J]. Environmental Management, 2009, 43(1): 69-83. doi: 10.1007/s00267-008-9139-x
[2] 侯朋福, 薛利祥, 周玉玲, 等. 掺混控释肥侧深施对稻田田面水氮素浓度的影响 [J]. 中国土壤与肥料, 2019(1): 16-21. doi: 10.11838/sfsc.1673-6257.18091 HOU P F, XUE L X, ZHOU Y L, et al. The effect of side deep fertilization for resin blending controlled-release fertilizer on nitrogen concentration in surface water of paddy field [J]. Soil and Fertilizer Sciences in China, 2019(1): 16-21(in Chinese). doi: 10.11838/sfsc.1673-6257.18091
[3] JIANG C L, FAN X Q, CUI G B, et al. Removal of agricultural non-point source pollutants by ditch wetlands: Implications for lake eutrophication control [J]. Hydrobiologia, 2007, 581(1): 319-327. doi: 10.1007/s10750-006-0512-6
[4] KÜMMERER K. Antibiotics in the aquatic environment - A review - Part I [J]. Chemosphere, 2009, 75(4): 417-434. doi: 10.1016/j.chemosphere.2008.11.086
[5] ZHOU L J, YING G G, LIU S, et al. Excretion masses and environmental occurrence of antibiotics in typical swine and dairy cattle farms in China [J]. Science of the Total Environment, 2013, 444: 183-195. doi: 10.1016/j.scitotenv.2012.11.087
[6] LU Y, XIAO Y F, ZHENG G Y, et al. Conditioning with zero-valent iron or Fe2+ activated peroxydisulfate at an acidic initial sludge pH removed intracellular antibiotic resistance genes but increased extracellular antibiotic resistance genes in sewage sludge [J]. Journal of Hazardous Materials, 2020, 386: 121982. doi: 10.1016/j.jhazmat.2019.121982
[7] LU Y, LI J M, MENG J, et al. Long-term biogas slurry application increased antibiotics accumulation and antibiotic resistance genes (ARGs) spread in agricultural soils with different properties [J]. Science of the Total Environment, 2021, 759: 143473. doi: 10.1016/j.scitotenv.2020.143473
[8] 张宁, 李淼, 刘翔. 土壤中抗生素抗性基因的分布及迁移转化 [J]. 中国环境科学, 2018, 38(7): 2609-2617. doi: 10.3969/j.issn.1000-6923.2018.07.029 ZHANG N, LI M, LIU X. Distribution and transformation of antibiotic resistance genes in soil [J]. China Environmental Science, 2018, 38(7): 2609-2617(in Chinese). doi: 10.3969/j.issn.1000-6923.2018.07.029
[9] 田其凡, 何玘霜, 陆安祥, 等. 农田土壤抗生素抗性基因与微生物群落的关系 [J]. 环境化学, 2020, 39(5): 1346-1355. doi: 10.7524/j.issn.0254-6108.2019060602 TIAN Q F, HE Q S, LU A X, et al. Relationship between antibiotic resistance genes and microbial communities in farmland soil [J]. Environmental Chemistry, 2020, 39(5): 1346-1355(in Chinese). doi: 10.7524/j.issn.0254-6108.2019060602
[10] SHI W, ZHANG H, LI J J, et al. Occurrence and spatial variation of antibiotic resistance genes (ARGs) in the Hetao Irrigation District, China [J]. Environmental Pollution, 2019, 251: 792-801. doi: 10.1016/j.envpol.2019.04.119
[11] 周俊, 邓伟, 刘伟龙. 沟渠湿地的水文和生态环境效应研究进展 [J]. 地球科学进展, 2008, 23(10): 1079-1083. doi: 10.3321/j.issn:1001-8166.2008.10.010 ZHOU J, DENG W, LIU W L. Advances on the effects of ditch wetland on hydrology and eco-environment [J]. Advances in Earth Science, 2008, 23(10): 1079-1083(in Chinese). doi: 10.3321/j.issn:1001-8166.2008.10.010
[12] 于淼, 马国胜, 赵昌平, 等. 氮磷生态拦截集成技术治理湖泊岸区农业面源污染分析研究 [J]. 环境科学与管理, 2015, 40(1): 72-74. doi: 10.3969/j.issn.1673-1212.2015.01.019 YU M, MA G S, ZHAO C P, et al. Analysis on controlling rural non-point pollution in lake shore area by eco-retain of nitrogen and phosphorus integrated technology [J]. Environmental Science and Management, 2015, 40(1): 72-74(in Chinese). doi: 10.3969/j.issn.1673-1212.2015.01.019
[13] 许明宸, 王逸超, 张文艺, 等. 生态沟渠净化稻田排水动力学分析和生物相特征 [J]. 环境化学, 2021, 40(2): 592-602. doi: 10.7524/j.issn.0254-6108.2019092701 XU M C, WANG Y C, ZHANG W Y, et al. Dynamics analysis and biofacies characteristics of drainage from paddy fields purified by ecological ditches [J]. Environmental Chemistry, 2021, 40(2): 592-602(in Chinese). doi: 10.7524/j.issn.0254-6108.2019092701
[14] GILL S L, SPURLOCK F C, GOH K S, et al. Vegetated ditches as a management practice in irrigated alfalfa [J]. Environmental Monitoring and Assessment, 2008, 144(1/2/3): 261-267.
[15] SMITH D R. Assessment of in-stream phosphorus dynamics in agricultural drainage ditches [J]. Science of the Total Environment, 2009, 407(12): 3883-3889. doi: 10.1016/j.scitotenv.2009.02.038
[16] LU Y, SUN R H, ZHANG C G, et al. In situ analysis of antibiotic resistance genes in anaerobically digested dairy manure and its subsequent disposal facilities [J]. Bioresource Technology, 2021, 333: 124988. doi: 10.1016/j.biortech.2021.124988
[17] LI E H, LI W, WANG X L, et al. Experiment of emergent macrophytes growing in contaminated sludge: Implication for sediment purification and lake restoration [J]. Ecological Engineering, 2010, 36(4): 427-434. doi: 10.1016/j.ecoleng.2009.11.009
[18] 王丽莎, 李希, 甘蕾, 等. 亚热带丘陵区湿地水生植物组合模式拦截氮磷的研究 [J]. 生态环境学报, 2017, 26(9): 1577-1583. WANG L S, LI X, GAN L, et al. Study on the aquatic plant combination patterns for intercepting nitrogen and phosphorus in wetland of subtropical hilly region [J]. Ecology and Environmental Sciences, 2017, 26(9): 1577-1583(in Chinese).
[19] LACOUL P, FREEDMAN B. Relationships between aquatic plants and environmental factors along a steep Himalayan altitudinal gradient [J]. Aquatic Botany, 2006, 84(1): 3-16. doi: 10.1016/j.aquabot.2005.06.011
[20] 陈英, 邱学林, 吴钰明. 太湖流域农田生态沟渠塘不同水生植物组合净化氮磷效果研究 [J]. 江苏农业科学, 2015, 43(12): 367-369. CHEN Y, QIU X L, WU Y M. Study on nitrogen and phosphorus removal efficiency of different aquatic plant combinations in farmland ecological ditch pond of Taihu Lake Basin [J]. Jiangsu Agricultural Sciences, 2015, 43(12): 367-369(in Chinese).
[21] 田昌, 陈敏, 周旋, 等. 生态沟渠对小流域农田排水中氮磷的拦截效果研究 [J]. 中国土壤与肥料, 2020(4): 186-191. doi: 10.11838/sfsc.1673-6257.19317 TIAN C, CHEN M, ZHOU X, et al. Effects of ecological ditch on interception of nitrogen and phosphorus in farmland drainage in small watershed [J]. Soil and Fertilizer Sciences in China, 2020(4): 186-191(in Chinese). doi: 10.11838/sfsc.1673-6257.19317