[1] |
MUSTAFA A, SCHOLZ M, KHAN S, et al. Application of solar disinfection for treatment of contaminated public water supply in a developing country: Field observations [J]. Journal of Water and Health, 2013, 11(1): 135-145. doi: 10.2166/wh.2012.119
|
[2] |
MARA D. Sanitation: what's the real problem? [J]. IDS Bulletin, 2012, 43(2): 86-92. doi: 10.1111/j.1759-5436.2012.00311.x
|
[3] |
HUTTON G, HALLER L, BARTRAM J. Global cost-benefit analysis of water supply and sanitation interventions [J]. Journal of Water and Health, 2007, 5(4): 481-502. doi: 10.2166/wh.2007.009
|
[4] |
NIEUWENHUIJSEN M J, TOLEDANO M B, EATON N E, et al. Chlorination disinfection byproducts in water and their association with adverse reproductive outcomes: A review [J]. Occupational and Environmental Medicine, 2000, 57(2): 73-85. doi: 10.1136/oem.57.2.73
|
[5] |
ZHANG C, LI Y, SHUAI D M, et al. Progress and challenges in photocatalytic disinfection of waterborne Viruses: A review to fill current knowledge gaps [J]. Chemical Engineering Journal, 2019, 355: 399-415. doi: 10.1016/j.cej.2018.08.158
|
[6] |
PICHEL N, VIVAR M, FUENTES M. The problem of drinking water access: A review of disinfection technologies with an emphasis on solar treatment methods [J]. Chemosphere, 2019, 218: 1014-1030. doi: 10.1016/j.chemosphere.2018.11.205
|
[7] |
ELLIS K V. Water disinfection: A review with some consideration of the requirements of the third world [J]. Critical Reviews in Environmental Control, 1991, 20(5/6): 341-407.
|
[8] |
DENG L Z, MUJUMDAR A S, PAN Z L, et al. Emerging chemical and physical disinfection technologies of fruits and vegetables: A comprehensive review [J]. Critical Reviews in Food Science and Nutrition, 2020, 60(15): 2481-2508. doi: 10.1080/10408398.2019.1649633
|
[9] |
LAZAROVA V, SAVOYE P, JANEX M L, et al. Advanced wastewater disinfection technologies: State of the art and perspectives [J]. Water Science and Technology, 1999, 40(4/5): 203-213.
|
[10] |
LOEB S, HOFMANN R, KIM J H. Beyond the pipeline: Assessing the efficiency limits of advanced technologies for solar water disinfection [J]. Environmental Science & Technology Letters, 2016, 3(3): 73-80.
|
[11] |
XIAO R Y, LIU K, BAI L, et al. Inactivation of pathogenic microorganisms by sulfate radical: Present and future [J]. Chemical Engineering Journal, 2019, 371: 222-232. doi: 10.1016/j.cej.2019.03.296
|
[12] |
LEE J, von GUNTEN U, KIM J H. Persulfate-based advanced oxidation: Critical assessment of opportunities and roadblocks [J]. Environmental Science & Technology, 2020, 54(6): 3064-3081.
|
[13] |
MATZEK L W, CARTER K E. Activated persulfate for organic chemical degradation: A review [J]. Chemosphere, 2016, 151: 178-188. doi: 10.1016/j.chemosphere.2016.02.055
|
[14] |
ZHOU Z, LIU X T, SUN K, et al. Persulfate-based advanced oxidation processes (AOPs) for organic-contaminated soil remediation: A review [J]. Chemical Engineering Journal, 2019, 372: 836-851. doi: 10.1016/j.cej.2019.04.213
|
[15] |
TSITONAKI A, PETRI B, CRIMI M, et al. In situ chemical oxidation of contaminated soil and groundwater using persulfate: A review [J]. Critical Reviews in Environmental Science and Technology, 2010, 40(1): 55-91. doi: 10.1080/10643380802039303
|
[16] |
WORDOFA D N, WALKER S L, LIU H Z. Sulfate radical-induced disinfection of pathogenic Escherichia coli O157: H7 via iron-activated persulfate [J]. Environmental Science & Technology Letters, 2017, 4(4): 154-160.
|
[17] |
WANG W J, WANG H N, LI G Y, et al. Catalyst-free activation of persulfate by visible light for water disinfection: Efficiency and mechanisms [J]. Water Research, 2019, 157: 106-118. doi: 10.1016/j.watres.2019.03.071
|
[18] |
MORENO-ANDRÉS J, FARINANGO G, ROMERO-MARTÍNEZ L, et al. Application of persulfate salts for enhancing UV disinfection in marine waters [J]. Water Research, 2019, 163: 114866. doi: 10.1016/j.watres.2019.114866
|
[19] |
AHN S, PETERSON T D, RIGHTER J, et al. Disinfection of ballast water with iron activated persulfate [J]. Environmental Science & Technology, 2013, 47(20): 11717-11725.
|
[20] |
徐梓淞, 宋雄伟, 黄闻宇, 等. 不同活化过硫酸盐体系的机理分析及不同无机阴离子的作用: 以两种有机染料为例 [J]. 环境化学, 2022, 41(4): 1412-1424. doi: 10.7524/j.issn.0254-6108.2020122103
XU Z S, SONG X W, HUANG W Y, et al. Mechanism analysis of different activated persulfate systems and effects of different inorganic anions: a case study of two organic dyes [J]. Environmental Chemistry, 2022, 41(4): 1412-1424(in Chinese). doi: 10.7524/j.issn.0254-6108.2020122103
|
[21] |
MORENO-ANDRÉS J, PEPERZAK L. Operational and environmental factors affecting disinfection byproducts formation in ballast water treatment systems [J]. Chemosphere, 2019, 232: 496-505. doi: 10.1016/j.chemosphere.2019.05.152
|
[22] |
COWIE B E, PORLEY V, ROBERTSON N. Solar disinfection (SODIS) provides a much underexploited opportunity for researchers in photocatalytic water treatment (PWT) [J]. ACS Catalysis, 2020, 10(20): 11779-11782. doi: 10.1021/acscatal.0c03325
|
[23] |
MEIERHOFER R, LANDOLT G. Factors supporting the sustained use of solar water disinfection—Experiences from a global promotion and dissemination programme [J]. Desalination, 2009, 248(1/2/3): 144-151.
|
[24] |
WANG W J, WANG H N, LI G Y, et al. Visible light activation of persulfate by magnetic hydrochar for bacterial inactivation: Efficiency, recyclability and mechanisms [J]. Water Research, 2020, 176: 115746. doi: 10.1016/j.watres.2020.115746
|
[25] |
XIA D H, YIN R, SUN J L, et al. Natural magnetic pyrrhotite as a high-Efficient persulfate activator for micropollutants degradation: Radicals identification and toxicity evaluation [J]. Journal of Hazardous Materials, 2017, 340: 435-444. doi: 10.1016/j.jhazmat.2017.07.029
|
[26] |
MA H K, ZHANG L L, HUANG X M, et al. A novel three-dimensional galvanic cell enhanced Fe2+/persulfate system: High efficiency, mechanism and damaging effect of antibiotic resistant E. coli and genes [J]. Chemical Engineering Journal, 2019, 362: 667-678. doi: 10.1016/j.cej.2019.01.042
|
[27] |
韩仪, 黄明杰, 周涛, 等. 氧化铜活化过硫酸盐的界面反应机理 [J]. 环境化学, 2020, 39(3): 735-744. doi: 10.7524/j.issn.0254-6108.2019110101
HAN Y, HUANG M J, ZHOU T, et al. Interfacial reaction mechanism of copper oxide activating persulfate [J]. Environmental Chemistry, 2020, 39(3): 735-744(in Chinese). doi: 10.7524/j.issn.0254-6108.2019110101
|
[28] |
SERNA-GALVIS E A, VÉLEZ-PEÑA E, OSORIO-VARGAS P, et al. Inactivation of carbapenem-resistant Klebsiella pneumoniae by photo-Fenton: Residual effect, gene evolution and modifications with citric acid and persulfate [J]. Water Research, 2019, 161: 354-363. doi: 10.1016/j.watres.2019.06.024
|
[29] |
XIAO S, CHENG M, ZHONG H, et al. Iron-mediated activation of persulfate and peroxymonosulfate in both homogeneous and heterogeneous ways: A review [J]. Chemical Engineering Journal, 2020, 384: 123265. doi: 10.1016/j.cej.2019.123265
|
[30] |
HOU K J, PI Z J, YAO F B, et al. A critical review on the mechanisms of persulfate activation by iron-based materials: Clarifying some ambiguity and controversies [J]. Chemical Engineering Journal, 2021, 407: 127078. doi: 10.1016/j.cej.2020.127078
|
[31] |
QI H, HUANG Q G, HUNG Y C. Efficacy of activated persulfate in inactivating Escherichia coli O157: H7 and Listeria monocytogenes [J]. International Journal of Food Microbiology, 2018, 284: 40-47. doi: 10.1016/j.ijfoodmicro.2018.06.021
|
[32] |
XIAO R Y, BAI L, LIU K, et al. Elucidating sulfate radical-mediated disinfection profiles and mechanisms of Escherichia coli and Enterococcus faecalis in municipal wastewater [J]. Water Research, 2020, 173: 115552. doi: 10.1016/j.watres.2020.115552
|
[33] |
XIA D H, LI Y, HUANG G C, et al. Activation of persulfates by natural magnetic pyrrhotite for water disinfection: Efficiency, mechanisms, and stability [J]. Water Research, 2017, 112: 236-247. doi: 10.1016/j.watres.2017.01.052
|
[34] |
陈妍希, 严登明, 朱明山. 外场效应强化过硫酸盐氧化技术去除有机污染物的研究进展 [J]. 环境科学研究, 2022, 35(1): 131-140.
CHEN Y X, YAN D M, ZHU M S. Recent progress in removal of organic pollutants by external-field effect enhanced persulfate oxidation processes [J]. Research of Environmental Sciences, 2022, 35(1): 131-140(in Chinese).
|
[35] |
YIN R, SUN J L, XIANG Y Y, et al. Recycling and reuse of rusted iron particles containing core-shell Fe-FeOOH for ibuprofen removal: Adsorption and persulfate-based advanced oxidation [J]. Journal of Cleaner Production, 2018, 178: 441-448. doi: 10.1016/j.jclepro.2018.01.005
|
[36] |
SUN P Z, TYREE C, HUANG C H. Inactivation of Escherichia coli, bacteriophage MS2, and Bacillus spores under UV/H2O2 and UV/peroxydisulfate advanced disinfection conditions [J]. Environmental Science & Technology, 2016, 50(8): 4448-4458.
|
[37] |
WEN G, DENG X L, WAN Q Q, et al. Photoreactivation of fungal spores in water following UV disinfection and their control using UV-based advanced oxidation processes [J]. Water Research, 2019, 148: 1-9. doi: 10.1016/j.watres.2018.10.028
|
[38] |
OZORES DIEZ P, GIANNAKIS S, RODRÍGUEZ-CHUECA J, et al. Enhancing solar disinfection (SODIS) with the photo-Fenton or the Fe2+/peroxymonosulfate-activation process in large-scale plastic bottles leads to toxicologically safe drinking water [J]. Water Research, 2020, 186: 116387. doi: 10.1016/j.watres.2020.116387
|
[39] |
XIA D H, TANG Z Y, WANG Y C, et al. Piezo-catalytic persulfate activation system for water advanced disinfection: Process efficiency and inactivation mechanisms [J]. Chemical Engineering Journal, 2020, 400: 125894. doi: 10.1016/j.cej.2020.125894
|
[40] |
WANG Z, JIANG J, PANG S Y, et al. Is sulfate radical really generated from peroxydisulfate activated by iron(II) for environmental decontamination? [J]. Environmental Science & Technology, 2018, 52(19): 11276-11284.
|
[41] |
谷得明, 郭昌胜, 冯启言, 等. 基于硫酸根自由基的高级氧化技术及其在环境治理中的应用 [J]. 环境化学, 2018, 37(11): 2489-2508. doi: 10.7524/j.issn.0254-6108.2018012102
GU D M, GUO C S, FENG Q Y, et al. Sulfate radical-based advanced oxidation processes and its application in environmental remediation [J]. Environmental Chemistry, 2018, 37(11): 2489-2508(in Chinese). doi: 10.7524/j.issn.0254-6108.2018012102
|
[42] |
WANG Z, QIU W, PANG S Y, et al. Further understanding the involvement of Fe(IV) in peroxydisulfate and peroxymonosulfate activation by Fe(II) for oxidative water treatment [J]. Chemical Engineering Journal, 2019, 371: 842-847. doi: 10.1016/j.cej.2019.04.101
|
[43] |
LEE C H. Use of high-valent metal species produced by the Fenton (-like) reactions in water treatment[M]//Frontiers in Water-Energy-Nexus—Nature-Based Solutions, Advanced Technologies and Best Practices for Environmental Sustainability. Cham: Springer International Publishing, 2019: 89.
|
[44] |
MERIDE Y, AYENEW B. Drinking water quality assessment and its effects on residents health in Wondo genet campus, Ethiopia [J]. Environmental Systems Research, 2016, 5: 1. doi: 10.1186/s40068-016-0053-6
|
[45] |
SONG W, LI J, WANG Z Y, et al. A mini review of activated methods to persulfate-based advanced oxidation process [J]. Water Science and Technology, 2019, 79(3): 573-579. doi: 10.2166/wcc.2018.168
|
[46] |
HOU S D, LING L, DIONYSIOU D D, et al. Chlorate formation mechanism in the presence of sulfate radical, chloride, bromide and natural organic matter [J]. Environmental Science & Technology, 2018, 52(11): 6317-6325.
|
[47] |
BOLYARD M, FAIR P S, HAUTMAN D P. Occurrence of chlorate in hypochlorite solutions used for drinking water disinfection [J]. Environmental Science & Technology, 1992, 26(8): 1663-1665.
|
[48] |
MARRON E L, van BUREN J, CUTHBERTSON A A, et al. Reactions of α, β-unsaturated carbonyls with free chlorine, free bromine, and combined chlorine [J]. Environmental Science & Technology, 2021, 55(5): 3305-3312.
|
[49] |
YIN R, LING L, SHANG C. Wavelength-dependent chlorine photolysis and subsequent radical production using UV-LEDs as light sources [J]. Water Research, 2018, 142: 452-458. doi: 10.1016/j.watres.2018.06.018
|