[1] |
余绵梓, 袁啸, 李适宇, 等. 典型PPCPs在河流沉积物中的吸附特性 [J]. 中国环境科学, 2019, 39(4): 1724-1733. doi: 10.3969/j.issn.1000-6923.2019.04.046
YU M Z, YUAN X, LI S Y, et al. Experimental and modeling study of sorption characteristics of selected PPCPs onto river sediments [J]. China Environmental Science, 2019, 39(4): 1724-1733(in Chinese). doi: 10.3969/j.issn.1000-6923.2019.04.046
|
[2] |
王建龙. 废水中药品及个人护理用品(PPCPs)的去除技术研究进展 [J]. 四川师范大学学报(自然科学版), 2020, 43(2): 143-172,140.
WANG J L. Removal of pharmaceuticals and personal care products(PPCPs) from wastewater: A review [J]. Journal of Sichuan Normal University (Natural Science), 2020, 43(2): 143-172,140(in Chinese).
|
[3] |
WANG J L, WANG S Z. Removal of pharmaceuticals and personal care products (PPCPs) from wastewater: A review [J]. Journal of Environmental Management, 2016, 182: 620-640. doi: 10.1016/j.jenvman.2016.07.049
|
[4] |
DANN A B, HONTELA A. Triclosan: environmental exposure, toxicity and mechanisms of action [J]. Journal of Applied Toxicology, 2011, 31(4): 285-311. doi: 10.1002/jat.1660
|
[5] |
LU Y C, MAO J H, ZHANG W, et al. A novel strategy for selective removal and rapid collection of triclosan from aquatic environment using magnetic molecularly imprinted nano−polymers [J]. Chemosphere, 2020, 238: 124640. doi: 10.1016/j.chemosphere.2019.124640
|
[6] |
YING G G, YU X Y, KOOKANA R S. Biological degradation of triclocarban and triclosan in a soil under aerobic and anaerobic conditions and comparison with environmental fate modelling [J]. Environmental Pollution, 2007, 150(3): 300-305. doi: 10.1016/j.envpol.2007.02.013
|
[7] |
戴步峰, 燕强, 贺超, 等. 抗生素去除技术在饮用水处理领域的研究进展 [J]. 应用化工, 2020, 49(8): 2091-2095,2100. doi: 10.3969/j.issn.1671-3206.2020.08.048
DAI B F, YAN Q, HE C, et al. Advances in antibiotic removal techniques in the field of drinking water treatment [J]. Applied Chemical Industry, 2020, 49(8): 2091-2095,2100(in Chinese). doi: 10.3969/j.issn.1671-3206.2020.08.048
|
[8] |
SUAREZ S, DODD M C, OMIL F, et al. Kinetics of triclosan oxidation by aqueous ozone and consequent loss of antibacterial activity: Relevance to municipal wastewater ozonation [J]. Water Research, 2007, 41(12): 2481-2490. doi: 10.1016/j.watres.2007.02.049
|
[9] |
罗从伟, 马军, 江进, 等. UV/H2O2降解三氯生动力学及反应机理 [J]. 哈尔滨工业大学学报, 2017, 49(2): 26-31. doi: 10.11918/j.issn.0367-6234.2017.02.005
LUO C W, MA J, JIANG J, et al. Degradation of triclosan by UV/H2O2: Kinetics and reaction mechanism [J]. Journal of Harbin Institute of Technology, 2017, 49(2): 26-31(in Chinese). doi: 10.11918/j.issn.0367-6234.2017.02.005
|
[10] |
GAO J, LUO C W, GAN L, et al. A comparative study of UV/H2O2 and UV/PDS for the degradation of micro-pollutants: Kinetics and effect of water matrix [J]. Environmental Science and Pollution Research, 2020, 27(19): 24531-24541. doi: 10.1007/s11356-020-08794-1
|
[11] |
AZARPIRA H, SADANI M, ABTAHI M, et al. Photo-catalytic degradation of triclosan with UV/iodide/ZnO process: Performance, kinetic, degradation pathway, energy consumption and toxicology [J]. Journal of Photochemistry and Photobiology A:Chemistry, 2019, 371: 423-432. doi: 10.1016/j.jphotochem.2018.10.041
|
[12] |
ABA-GUEVARA C G, MEDINA-RAMÍREZ I E, HERNÁNDEZ-RAMÍREZ A, et al. Comparison of two synthesis methods on the preparation of Fe, N-Co-doped TiO2 materials for degradation of pharmaceutical compounds under visible light [J]. Ceramics International, 2017, 43(6): 5068-5079. doi: 10.1016/j.ceramint.2017.01.018
|
[13] |
CHHETRI R K, THORNBERG D, BERNER J, et al. Chemical disinfection of combined sewer overflow waters using performic acid or peracetic acids [J]. Science of the Total Environment, 2014, 490: 1065-1072. doi: 10.1016/j.scitotenv.2014.05.079
|
[14] |
CAI M Q, SUN P Z, ZHANG L Q, et al. UV/peracetic acid for degradation of pharmaceuticals and reactive species evaluation [J]. Environmental Science & Technology, 2017, 51(24): 14217-14224.
|
[15] |
BIANCHINI R, CALUCCI L, CARETTI C, et al. An EPR study on wastewater disinfection by peracetic acid, hydrogen peroxide and UV irradiation [J]. Annali Di Chimica, 2002, 92(9): 783-793.
|
[16] |
田丹, 吴玮, 沈芷璇, 等. Co(Ⅱ)活化过氧乙酸降解有机染料研究 [J]. 环境科学学报, 2018, 38(10): 4023-4031.
TIAN D, WU W, SHEN Z X, et al. Degradation of organic dyes with peracetic acid activated by Co(Ⅱ) [J]. Acta Scientiae Circumstantiae, 2018, 38(10): 4023-4031(in Chinese).
|
[17] |
CHEN J, QU R J, PAN X X, et al. Oxidative degradation of triclosan by potassium permanganate: Kinetics, degradation products, reaction mechanism, and toxicity evaluation [J]. Water Research, 2016, 103: 215-223. doi: 10.1016/j.watres.2016.07.041
|
[18] |
WANG S X, WANG H B, LIU Y Q, et al. Effective degradation of sulfamethoxazole with Fe2+-zeolite/peracetic acid [J]. Separation and Purification Technology, 2020, 233: 115973. doi: 10.1016/j.seppur.2019.115973
|
[19] |
WANG Z P, WANG J W, XIONG B, et al. Application of cobalt/peracetic acid to degrade sulfamethoxazole at neutral condition: Efficiency and mechanisms[J]. Environmental Science & Technology, 2019: acs. est. 9b04528.
|
[20] |
KIM J, ZHANG T Q, LIU W, et al. Advanced oxidation process with peracetic acid and Fe(II) for contaminant degradation [J]. Environmental Science & Technology, 2019, 53(22): 13312-13322.
|
[21] |
GHANBARI F, GIANNAKIS S, LIN K Y A, et al. Acetaminophen degradation by a synergistic peracetic acid/UVC-LED/Fe(II) advanced oxidation process: Kinetic assessment, process feasibility and mechanistic considerations [J]. Chemosphere, 2021, 263: 128119. doi: 10.1016/j.chemosphere.2020.128119
|
[22] |
ZHANG L, LIU Y Q, FU Y S. Degradation kinetics and mechanism of diclofenac by UV/peracetic acid [J]. RSC Advances, 2020, 10(17): 9907-9916. doi: 10.1039/D0RA00363H
|
[23] |
YUAN Z, NI Y, van HEININGEN A R P. Kinetics of peracetic acid decomposition: Part I: Spontaneous decomposition at typical pulp bleaching conditions [J]. The Canadian Journal of Chemical Engineering, 1997, 75(1): 37-41. doi: 10.1002/cjce.5450750108
|
[24] |
SHAH N S, HE X X, KHAN H M, et al. Efficient removal of endosulfan from aqueous solution by UV-C/peroxides: A comparative study [J]. Journal of Hazardous Materials, 2013, 263: 584-592. doi: 10.1016/j.jhazmat.2013.10.019
|
[25] |
REZAEI R, MOHSENI M. Impact of natural organic matter on the degradation of 2, 4-dichlorophenoxy acetic acid in a fluidized bed photocatalytic reactor [J]. Chemical Engineering Journal, 2017, 310: 457-463. doi: 10.1016/j.cej.2016.05.086
|
[26] |
KANG Y M, KIM M K, ZOH K D. Effect of nitrate, carbonate/bicarbonate, humic acid, and H2O2 on the kinetics and degradation mechanism of Bisphenol-A during UV photolysis [J]. Chemosphere, 2018, 204: 148-155. doi: 10.1016/j.chemosphere.2018.04.015
|
[27] |
WESTERHOFF P, MEZYK S P, COOPER W J, et al. Electron pulse radiolysis determination of hydroxyl radical rate constants with Suwannee River fulvic acid and other dissolved organic matter isolates [J]. Environmental Science & Technology, 2007, 41(13): 4640-4646.
|
[28] |
LIAO C H, KANG S F, WU F A. Hydroxyl radical scavenging role of chloride and bicarbonate ions in the H2O2/UV process [J]. Chemosphere, 2001, 44(5): 1193-1200. doi: 10.1016/S0045-6535(00)00278-2
|
[29] |
WANG J L, WANG S Z. Effect of inorganic anions on the performance of advanced oxidation processes for degradation of organic contaminants [J]. Chemical Engineering Journal, 2021, 411: 128392. doi: 10.1016/j.cej.2020.128392
|
[30] |
HUANG Y, KONG M H, WESTERMAN D, et al. Effects of HCO3– on degradation of toxic contaminants of emerging concern by UV/NO3– [J]. Environmental Science & Technology, 2018, 52(21): 12697-12707.
|
[31] |
LATCH D E, PACKER J L, STENDER B L, et al. Aqueous photochemistry OF triclosan: Formation OF 2, 4-DICHLOROPHENOL, 2, 8-DICHLORODIBENZO-p-DIOXIN and oligomerization products [J]. Environmental Toxicology and Chemistry, 2005, 24(3): 517. doi: 10.1897/04-243R.1
|
[32] |
KEEN O S, LOVE N G, LINDEN K G. The role of effluent nitrate in trace organic chemical oxidation during UV disinfection [J]. Water Research, 2012, 46(16): 5224-5234. doi: 10.1016/j.watres.2012.06.052
|
[33] |
MOFFETT J W, ZIKA R G. Reaction kinetics of hydrogen peroxide with copper and iron in seawater [J]. Environmental Science & Technology, 1987, 21(8): 804-810.
|
[34] |
LEE C, YOON J. Temperature dependence of hydroxyl radical formation in the hv/Fe3+/H2O2 and Fe3+/H2O2 systems [J]. Chemosphere, 2004, 56(10): 923-934. doi: 10.1016/j.chemosphere.2004.04.047
|
[35] |
SUN K, LI S Y, YU J L, et al. Cu2+-assisted laccase from Trametes versicolor enhanced self-polyreaction of triclosan [J]. Chemosphere, 2019, 225: 745-754. doi: 10.1016/j.chemosphere.2019.03.079
|
[36] |
PENG J B, LI J H, SHI H H, et al. Oxidation of disinfectants with Cl-substituted structure by a Fenton-like system Cu2+/H2O2 and analysis on their structure-reactivity relationship [J]. Environmental Science and Pollution Research, 2016, 23(2): 1898-1904. doi: 10.1007/s11356-015-5454-y
|
[37] |
GAO H P, CHEN J B, ZHANG Y L, et al. Sulfate radicals induced degradation of Triclosan in thermally activated persulfate system [J]. Chemical Engineering Journal, 2016, 306: 522-530. doi: 10.1016/j.cej.2016.07.080
|
[38] |
PENG J B, ZHANG Y Z, ZHANG C N, et al. Removal of triclosan in a Fenton-like system mediated by graphene oxide: Reaction kinetics and ecotoxicity evaluation [J]. Science of the Total Environment, 2019, 673: 726-733. doi: 10.1016/j.scitotenv.2019.03.354
|