[1] |
FENG J Y, ZHANG J Y, ZHANG J F, et al. Enhanced methane production of vinegar residue by response surface methodology (RSM)[J]. AMB Express, 2017, 7(1): 89. doi: 10.1186/s13568-017-0392-3
|
[2] |
崔耀明, 董晓芳, 佟建明, 等. 山西老陈醋醋糟营养成分分析[J]. 饲料工业, 2015, 36(1): 24-29. doi: 10.13302/j.cnki.fi.2015.01.005
|
[3] |
WANG Z B, SHAO S P, ZHANG C S, et al. Pretreatment of vinegar residue and anaerobic sludge for enhanced hydrogen and methane production in the two-stage anaerobic system[J]. International Journal of Hydrogen Energy, 2015, 40(13): 4494-4501. doi: 10.1016/j.ijhydene.2015.02.029
|
[4] |
王芳, 上官明军, 张变英, 等. 山西省醋糟资源现状及其在动物生产中的应用[J]. 畜禽业, 2014, 10(1): 44-46. doi: 10.3969/j.issn.1008-0414.2014.10.029
|
[5] |
陈晓寅, 王振斌, 马海乐, 等. 醋糟的利用现状及前景[J]. 中国酿造, 2010, 29(10): 1-4. doi: 10.3969/j.issn.0254-5071.2010.10.001
|
[6] |
WEN H L, WACHEMO A C, ZHANG L, et al. A novel strategy for efficient anaerobic co-digestion based on the pretreatment of corn stover with fresh vinegar residue[J]. Bioresource Technology, 2019, 21(1): 121412.
|
[7] |
汤潜潜. 木质素的应用研究进展[J]. 内江科技, 2020, 41(5): 118-119.
|
[8] |
LI L, FENG L, ZHANG R H, et al. Anaerobic digestion performance of vinegar residue in continuously stirred tank reactor[J]. Bioresource Technology, 2015, 186(3): 338-342.
|
[9] |
RENDERS T, VAN DEN BOSCH S, KOELEWIJN S F, et al. Lignin-first biomass fractionation: the advent of active stabilisation strategies[J]. Energy & Environmental Science, 2017, 10(7): 1551-1557.
|
[10] |
LUCA Z, ANIKA S, EVA-LISA T, et al. Valorization of side-streams from a SSF biorefinery plant: wheat straw lignin purification study[J]. Bioresources, 2017, 12(1): 1680-1696.
|
[11] |
宋春雪. 醋糟的研究与利用现状[J]. 中国调味品, 2011, 36(12): 1-4. doi: 10.3969/j.issn.1000-9973.2011.12.001
|
[12] |
陈立祥, 章怀云. 木质素生物降解及其应用研究进展[J]. 中南林学院学报, 2003, 23(1): 79-85.
|
[13] |
LI P P, HE C, LI G, et al. Biological pretreatment of corn straw for enhancing degradation efficiency and biogas production[J]. Bioengineered, 2020, 11(1): 251-260. doi: 10.1080/21655979.2020.1733733
|
[14] |
ZHOU Y L, XU Z Y, ZHAO M X, et al. Construction and evaluation of efficient solid-state anaerobic digestion system via vinegar residue[J]. International Biodeterioration & Biodegradation, 2018, 133: 142-150.
|
[15] |
CHALIEUR O, MADIGOU C, CIVADE R, et al. Increasing concentrations of phenol progressively affect anaerobic digestion of cellulose and associated microbial communities[J]. Biodegradation, 2016, 27(1): 15-27. doi: 10.1007/s10532-015-9751-4
|
[16] |
李倩, 许之扬, 周云龙, 等. 瘤胃微生物强化醋糟厌氧消化及其机制[J]. 环境科学研究, 2020, 33(10): 2370-2377. doi: 10.13198/j.issn.1001-6929.2020.02.02
|
[17] |
国家环境保护总局. 水和废水监测分析方法[J]. 4版. 北京:中国环境科学出版社, 2002: 105-108.
|
[18] |
HALL N G, SCHOENFELDT H C. Total nitrogen vs. amino-acid profile as indicator of protein content of beef[J]. Food Chemistry, 2013, 140(3): 608-612. doi: 10.1016/j.foodchem.2012.08.046
|
[19] |
VAX SOEST P J. Use of detergents in the analysis of fibrous feeds. II. a rapid method for the determination of fiber and lignin[J]. Journal of the Association of Official Agricultural Chemists, 1963, 46(5): 829-835.
|
[20] |
张通, 白富栋, 李政, 等. 酶解秸秆残渣中木质素提取方法的研究[J]. 化学研究与应用, 2018, 30(6): 901-906. doi: 10.3969/j.issn.1004-1656.2018.06.006
|
[21] |
LOWE S E, THEODOROU M K, TRINCI A P. Cellulases and xylanase of an anaerobic rumen fungus grown on wheat straw, wheat straw holocellulose, cellulose, and xylan[J]. Applied and Environmental Microbiology, 1987, 53(6): 1216-1223. doi: 10.1128/aem.53.6.1216-1223.1987
|
[22] |
LIU J M, JIN S, BAO C H, et al. Rapid determination of lignocellulose in corn stover based on near-infrared reflectance spectroscopy and chemometrics methods[J]. Bioresource Technology, 2021, 321: 124449. doi: 10.1016/j.biortech.2020.124449
|
[23] |
YANG S G, LI J H, ZHENG Z, et al. Lignocellulosic structural changes of Spartina alterniflora after anaerobic mono- and co-digestion[J]. International Biodeterioration & Biodegradation, 2009, 63(5): 569-575.
|
[24] |
CHANDRA R, TAKEUCHI H, HASEGAWA T. Methane production from lignocellulosic agricultural crop wastes: a review in context to second generation of biofuel production[J]. Renewable & Sustainable Energy Reviews, 2012, 16(3): 1462-1476.
|
[25] |
邱苏鹏, 赵会芳, 沙力争. 硬脂酰氯改性碱木质素及微纳米球的制备[J]. 中国造纸, 2021, 40(9): 1-8.
|
[26] |
CANTAREL B L, COUTINHO P M, RANCUREL C, et al. The carbohydrate-active enzymes database (CAZy): an expert resource for glycogenomics[J]. Nucleic Acids Research, 2009, 37(Suppl 1): 233-238.
|
[27] |
ANTUNES L P, MARTINS L F, PEREIRA R V, et al. Microbial community structure and dynamics in thermophilic composting viewed through metagenomics and metatranscriptomics[J]. Scientific Reports, 2016, 6(6): 38915.
|
[28] |
LIANG J S, FANG W, WANG Q Y, et al. Metagenomic analysis of community, enzymes and metabolic pathways during corn straw fermentation with rumen microorganisms for volatile fatty acid production[J]. Bioresource Technology, 2021, 342: 126004. doi: 10.1016/j.biortech.2021.126004
|
[29] |
MA C, LO P K, XU J, et al. Molecular mechanisms underlying lignocellulose degradation and antibiotic resistance genes removal revealed via metagenomics analysis during different agricultural wastes composting[J]. Bioresource Technology, 2020, 314: 123731. doi: 10.1016/j.biortech.2020.123731
|