[1] |
孙怡, 于利亮, 黄浩斌, 等. 高级氧化技术处理难降解有机废水的研发趋势及实用化进展[J]. 化工学报, 2017, 68(5)∶1743—1756.
SUN Y, YU L L, HUANG H B, et al. Research trend and practical development of advanced oxidation process on degradation of recalcitrant organic wastewater[J]. CIESC Journal 2017, 68(5): 1743-1756(in Chinese).
|
[2] |
冯雪梅, 卫新来, 陈俊, 等. 高级氧化技术在废水处理中的应用进展 [J]. 应用化工, 2020, 49(4): 993-996,1001. doi: 10.3969/j.issn.1671-3206.2020.04.042
FENG X L, WEI X L, CHEN J, et al. Progress in the application of advanced oxidation technology in wastewater treatment [J]. Applied Chemical Industry, 2020, 49(4): 993-996,1001(in Chinese). doi: 10.3969/j.issn.1671-3206.2020.04.042
|
[3] |
KAUR R, KUSHWAHA J P, SINGH N. Amoxicillin electro-catalytic oxidation using Ti/RuO2 anode: Mechanism, oxidation products and degradation pathway [J]. Electrochimica Acta, 2019, 296: 856-866. doi: 10.1016/j.electacta.2018.11.114
|
[4] |
CHAPLIN B P. The prospect of electrochemical technologies advancing worldwide water treatment [J]. Accounts of Chemical Research, 2019, 52(3): 596-604. doi: 10.1021/acs.accounts.8b00611
|
[5] |
SY A, YLA B, CSA B, et al. Rapid decontamination of tetracycline hydrolysis product using electrochemical CNT filter: Mechanism, impacting factors and pathways [J]. Chemosphere, 2020, 244: 125525. doi: 10.1016/j.chemosphere.2019.125525
|
[6] |
MUIR D C, HOWARD P H. Are there other persistent organic pollutants? A challenge for environmental chemists [J]. Environmental Science & Technology, 2006, 40(23): 7157-7166.
|
[7] |
LI N, ZHOU L, JIN X, et al. Simultaneous removal of tetracycline and oxytetracycline antibiotics from wastewater using a ZIF-8 metal organic-framework [J]. Journal of Hazardous Materials, 2019, 366: 563-572. doi: 10.1016/j.jhazmat.2018.12.047
|
[8] |
卓琼芳, 杨波, 邓述波, 等. 用于有机物降解的电化学阳极材料 [J]. 化学进展, 2012(4): 628-636.
ZHUO Q F, YANG B, DENG S B, et al. Electrochemical anodic materials used for degradation of organic pollutants [J]. Progress in Chemistry, 2012(4): 628-636(in Chinese).
|
[9] |
YANG N, YU S, MACPHERSON J V, et al. Conductive diamond: synthesis, properties, and electrochemical applications [J]. Chemical Society Reviews, 2019, 48(1): 157-204. doi: 10.1039/C7CS00757D
|
[10] |
李彩霞, 张素素, 何平, 等. 掺杂金刚石电极及电化学应用研究进展 [J]. 功能材料, 2017, 48(8): 8007-8013.
LI C X, ZHANG S S, HE P, et al. Research progress of doped diamond electrode and its electrochemical application [J]. Journal of Functional Materials, 2017, 48(8): 8007-8013(in Chinese).
|
[11] |
HE Y, LIN H, GUO Z, et al. Recent developments and advances in boron-doped diamond electrodes for electrochemical oxidation of organic pollutants [J]. Separation and Purification Technology, 2019, 212: 802-821. doi: 10.1016/j.seppur.2018.11.056
|
[12] |
GONZáLEZ T, DOMíNGUEZ J, PALO P, et al. Development and optimization of the BDD-electrochemical oxidation of the antibiotic trimethoprim in aqueous solution [J]. Desalination, 2011, 280(1-3): 197-202. doi: 10.1016/j.desal.2011.07.012
|
[13] |
NIDHEESH P V, DIVYAPRIYA G, OTURAN N, et al. Environmental applications of boron-doped diamond electrodes: 1. Applications in water and wastewater treatment [J]. ChemElectroChem, 2019, 6(8): 2124-2142. doi: 10.1002/celc.201801876
|
[14] |
HE Y P, HUANG W M, CHEN R L, et al. Anodic oxidation of aspirin on PbO2, BDD and porous Ti/BDD electrodes: Mechanism, kinetics and utilization rate[J]. Separation and Purification Technology 2015, 156: 124-131.
|
[15] |
蒋欢, 王婷, 郑彤, 等. 水体中磺胺甲恶唑在BDD电极体系中的电化学氧化机理 [J]. 北京大学学报(自然科学版), 2019, 55(3): 482-488. doi: 10.13209/j.0479-8023.2019.019
JIANG H, WANG T, ZHENG T, et al. Electrochemical oxidation mechanism of sulfamethoxazole in BDD electrode system [J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2019, 55(3): 482-488(in Chinese). doi: 10.13209/j.0479-8023.2019.019
|
[16] |
ZHANG J, YU X, ZHAO Z Y, et al. Influence of pore size of Ti substrate on structural and capacitive properties of Ti/boron doped diamond electrode [J]. Journal of Alloys and Compounds, 2019, 777: 84-93. doi: 10.1016/j.jallcom.2018.10.120
|
[17] |
MA L, ZHANG M Q, ZHU C W, et al. Electrochemical oxidation of reactive brilliant orange X-GN dye on boron-doped diamond anode [J]. Journal of Central South University, 2018, 25(8): 1825-1835. doi: 10.1007/s11771-018-3872-y
|
[18] |
MEI R, WEI Q, ZHU C, et al. 3D macroporous boron-doped diamond electrode with interconnected liquid flow channels: A high-efficiency electrochemical degradation of RB-19 dye wastewater under low current [J]. Applied Catalysis B:Environmental, 2019, 245: 420-427. doi: 10.1016/j.apcatb.2018.12.074
|
[19] |
蒋绍阶, 盛贵尚, 刘静, 等. 掺硼金刚石三电极系统处理垃圾渗滤液实验研究 [J]. 环境工程学报, 2014, 8(11): 4800-4805.
JIANG S J, SHENG G S, LIU J, et al. Experimental research on treatment of landfill leachate by boron-doped diamond anode in three electrodes system [J]. Chinese Journal of Environmental Engineering, 2014, 8(11): 4800-4805(in Chinese).
|
[20] |
LUU T L, TIEN T T, DUONG N B, et al. Study the treatment of tannery wastewater after biological pretreatment by using electrochemical oxidation on BDD/Ti anode [J]. Desalination and Water Treatment, 2019, 137: 194-201. doi: 10.5004/dwt.2019.23352
|
[21] |
HE Y, ZHANG P, HUANG H, et al. Electrochemical degradation of herbicide diuron on flow-through electrochemical reactor and CFD hydrodynamics simulation [J]. Separation and Purification Technology, 2020, 251: 117284. doi: 10.1016/j.seppur.2020.117284
|
[22] |
王慧晴, 李燕, 司友斌, 等. 电催化氧化降解水体中抗生素磺胺 [J]. 环境工程学报, 2018, 12(3): 779-787. doi: 10.12030/j.cjee.201709210
WANG H Q, LI Y, SI Y B, et al. Electro-catalytic oxidative degradation of sulfonamide in water [J]. Chinese Journal of Environmental Engineering, 2018, 12(3): 779-787(in Chinese). doi: 10.12030/j.cjee.201709210
|
[23] |
石秋俊, 刘安迪, 唐柏彬, 等. Ni掺杂Sb-SnO2瓷环粒子电极电催化氧化磺胺嘧啶 [J]. 环境科学, 2020, 41(4): 1725-1733.
SHI Q J, LIU A D, TANG B B, et al. Electrocatalytic oxidation of sulfadiazine with Ni-doped Sb-SnO2 ceramic ring particle electrode [J]. Environmental Science, 2020, 41(4): 1725-1733(in Chinese).
|
[24] |
OLIVEIRA K, VEROLI A B, RUOTOLO L. Using modulated current for energy minimization in the electrochemical treatment of effluents containing organic pollutants [J]. Journal of Hazardous Materials, 2020, 399: 123053. doi: 10.1016/j.jhazmat.2020.123053
|
[25] |
GANIYU S O, MARTíNEZ-HUITLE C A. Nature, mechanisms and reactivity of electrogenerated reactive species at thin-film boron-doped diamond (BDD) electrodes during electrochemical wastewater treatment [J]. ChemElectroChem, 2019, 6(9): 2379-2392. doi: 10.1002/celc.201900159
|
[26] |
CHONG M C, LEE W, HONG S W, et al. Effects of anode materials and chloride ions on current efficiency of electrochemical oxidation of carbohydrate compounds [J]. Journal of The Electrochemical Society, 2019, 166(13): H628-H634. doi: 10.1149/2.0801913jes
|
[27] |
YANG Y. Recent advances in the electrochemical oxidation water treatment: Spotlight on byproduct control [J]. Frontiers of Environmental Science & Engineering, 2020, 14(5): 85.
|
[28] |
DA SILVA S W, NAVARRO E M O, RODRIGUES M A S, et al. Using p-Si/BDD anode for the electrochemical oxidation of norfloxacin [J]. Journal of Electroanalytical Chemistry, 2019, 832: 112-120. doi: 10.1016/j.jelechem.2018.10.049
|
[29] |
王慧娴, 罗建中, 梁子豪, 等. 甲氧苄啶在有机酸络合Fe2+活化过硫酸钠体系中的降解机制 [J]. 环境化学, 2018, 37(10): 2257-2266. doi: 10.7524/j.issn.0254-6108.2017121401
WANG H X, LUO J Z, LIANG Z H, et al. Degradation mechanism of trimethoprim by organic acid chelating Fe2+-activated sodium peroxydisulfate [J]. Environmental Science, 2018, 37(10): 2257-2266(in Chinese). doi: 10.7524/j.issn.0254-6108.2017121401
|
[30] |
AMORIM K D, ROMUALDO L L, ANDRADE L S. Electrochemical degradation of sulfamethoxazole and trimethoprim at boron-doped diamond electrode: Performance, kinetics and reaction pathway [J]. Separation & Purification Technology, 2013, 120: 319-327.
|
[31] |
ZHU X P, SHI S Y, WEI J J, et al. Electrochemical oxidation characteristics of p-substituted phenols using a boron-doped diamond electrode [J]. Environmental Science & Technology, 2007, 41(18): 6541-6546.
|