[1] 中华人民共和国生态环境部. 2020中国生态环境状况公报[R]. 2021.
[2] 贺克斌, 杨复沫, 段凤魁. 大气颗粒物与区域复合污染[M]. 北京: 科学出版社, 2011. HE K B, YANG F M, DUAN F K. Atmospheric particles and regional compound pollution[M]. Beijing: Science Press, 2011(in Chinese).
[3] 楚碧武, 马庆鑫, 段凤魁, 等. 大气“霾化学”: 概念提出和研究展望 [J]. 化学进展, 2020, 32(1): 1-4. CHU B W, MA Q X, DUAN F K, et al. Atmospheric “haze chemistry”: Concept and research prospects [J]. Progress in Chemistry, 2020, 32(1): 1-4(in Chinese).
[4] GAO J H, WOODWARD A, VARDOULAKIS S, et al. Haze, public health and mitigation measures in China: A review of the current evidence for further policy response [J]. Science of the Total Environment, 2017, 578: 148-157. doi: 10.1016/j.scitotenv.2016.10.231
[5] WANG Y C, WANG Q Y, YE J H, et al. A review of aerosol chemical composition and sources in representative regions of China during wintertime [J]. Atmosphere, 2019, 10(5): 277. doi: 10.3390/atmos10050277
[6] GU J X, BAI Z P, LI W F, et al. Chemical composition of PM2.5 during winter in Tianjin, China [J]. Particuology, 2011, 9(3): 215-221. doi: 10.1016/j.partic.2011.03.001
[7] LIANG C S, DUAN F K, HE K B, et al. Review on recent progress in observations, source identifications and countermeasures of PM2.5 [J]. Environment International, 2016, 86: 150-170. doi: 10.1016/j.envint.2015.10.016
[8] LI W J, SUN J X, XU L, et al. A conceptual framework for mixing structures in individual aerosol particles [J]. Journal of Geophysical Research:Atmospheres, 2016, 121(22): 13784-13798. doi: 10.1002/2016JD025252
[9] CHINA S, SCARNATO B, OWEN R C, et al. Morphology and mixing state of aged soot particles at a remote marine free troposphere site: Implications for optical properties [J]. Geophysical Research Letters, 2015, 42(4): 1243-1250. doi: 10.1002/2014GL062404
[10] AULT A P, AXSON J L. Atmospheric aerosol chemistry: Spectroscopic and microscopic advances [J]. Analytical Chemistry, 2017, 89(1): 430-452. doi: 10.1021/acs.analchem.6b04670
[11] WANG F, YU H F, WANG Z Y, et al. Review of online source apportionment research based on observation for ambient particulate matter [J]. Science of the Total Environment, 2021, 762: 144095. doi: 10.1016/j.scitotenv.2020.144095
[12] LI W J, SHAO L Y, ZHANG D Z, et al. A review of single aerosol particle studies in the atmosphere of East Asia: Morphology, mixing state, source, and heterogeneous reactions [J]. Journal of Cleaner Production, 2016, 112: 1330-1349. doi: 10.1016/j.jclepro.2015.04.050
[13] RIEMER N, AULT A P, WEST M, et al. Aerosol mixing state: Measurements, modeling, and impacts [J]. Reviews of Geophysics, 2019, 57(2): 187-249. doi: 10.1029/2018RG000615
[14] NIU H Y, SHAO L Y, ZHANG D Z. Soot particles at an elevated site in Eastern China during the passage of a strong cyclone [J]. Science of the Total Environment, 2012, 430: 217-222. doi: 10.1016/j.scitotenv.2012.04.050
[15] FU H, ZHANG M, LI W, et al. Morphology, composition and mixing state of individual carbonaceous aerosol in urban Shanghai [J]. Atmospheric Chemistry and Physics, 2012, 12(2): 693-707. doi: 10.5194/acp-12-693-2012
[16] RAMAN C V, KRISHNAN K S. A new type of secondary radiation [J]. Nature, 1928, 121(3048): 501-502.
[17] 李英红, 谭吉华, 饶志国, 等. 兰州市大气细颗粒物中水溶性离子的污染特征 [J]. 环境化学, 2016, 35(9): 1799-1807. doi: 10.7524/j.issn.0254-6108.2016.09.2015101102 LI Y H, TAN J H, RAO Z G, et al. Pollution characteristics of water soluble ions in atmospheric fine particles in Lanzhou [J]. Environmental Chemistry, 2016, 35(9): 1799-1807(in Chinese). doi: 10.7524/j.issn.0254-6108.2016.09.2015101102
[18] LI W J, ZHOU S Z, WANG X F, et al. Integrated evaluation of aerosols from regional brown hazes over Northern China in winter: Concentrations, sources, transformation, and mixing states [J]. Journal of Geophysical Research:Atmospheres, 2011, 116(D9): D09301.
[19] CHENG Y F, ZHENG G J, WEI C, et al. Reactive nitrogen chemistry in aerosol water as a source of sulfate during haze events in China [J]. Science Advances, 2016, 2(12): e1601530. doi: 10.1126/sciadv.1601530
[20] 唐孝炎, 张远航, 邵敏. 大气环境化学-第2版[M]. 北京: 高等教育出版社, 2006. TANG X Y, ZHANG Y H, SHAO M. Atmospheric environmental Chemistry-2nd Edition[M]. Beijing: Higher Education Press, 2006 (in Chinese).
[21] VARGAS JENTZSCH P, KAMPE B, CIOBOTĂ V, et al. Inorganic salts in atmospheric particulate matter: Raman spectroscopy as an analytical tool [J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy, 2013, 115: 697-708. doi: 10.1016/j.saa.2013.06.085
[22] ZAPATA F, GARCÍA-RUIZ C. The discrimination of 72 nitrate, chlorate and perchlorate salts using IR and Raman spectroscopy [J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy, 2018, 189: 535-542. doi: 10.1016/j.saa.2017.08.058
[23] SUN Z L, DUAN F K, HE K B, et al. Physicochemical analysis of individual atmospheric fine particles based on effective surface-enhanced Raman spectroscopy [J]. Journal of Environmental Sciences, 2019, 75: 388-395. doi: 10.1016/j.jes.2018.06.006
[24] LING T Y, CHAN C K. Formation and transformation of metastable double salts from the crystallization of mixed ammonium nitrate and ammonium sulfate particles [J]. Environmental Science & Technology, 2007, 41(23): 8077-8083.
[25] WANG F, ZHENG Y X, ZHANG Y H. Temporally and spatially resolved investigation on the efflorescence process of a mixed droplet of ammonium sulfate and ammonium nitrate [J]. Chinese Science Bulletin, 2011, 56(24): 2600-2603. doi: 10.1007/s11434-011-4617-6
[26] SUN Z L, DUAN F K, HE K B, et al. Sulfate-nitrate-ammonium as double salts in PM2.5: Direct observations and implications for haze events [J]. Science of the Total Environment, 2019, 647: 204-209. doi: 10.1016/j.scitotenv.2018.07.107
[27] JENTZSCH P V, BOLANZ R M, CIOBOTĂ V, et al. Raman spectroscopic study of calcium mixed salts of atmospheric importance [J]. Vibrational Spectroscopy, 2012, 61: 206-213. doi: 10.1016/j.vibspec.2012.03.007
[28] SHARMA N, CHINA S, BHANDARI J, et al. Physical properties of aerosol internally mixed with soot particles in a biogenically dominated environment in California [J]. Geophysical Research Letters, 2018, 45(20): 11473-11482. doi: 10.1029/2018gl079404
[29] HE G Z, MA J Z, HE H. Role of carbonaceous aerosols in catalyzing sulfate formation [J]. ACS Catalysis, 2018, 8(5): 3825-3832. doi: 10.1021/acscatal.7b04195
[30] ROSEN H, NOVAKOV T. Raman scattering and the characterisation of atmospheric aerosol particles [J]. Nature, 1977, 266(5604): 708-710. doi: 10.1038/266708a0
[31] TRIVANOVIC U, SIPKENS T A, KAZEMIMANESH M, et al. Morphology and size of soot from gas flares as a function of fuel and water addition [J]. Fuel, 2020, 279: 118478. doi: 10.1016/j.fuel.2020.118478
[32] BLADT H, IVLEVA N P, NIESSNER R. Internally mixed multicomponent soot: Impact of different salts on soot structure and thermo-chemical properties [J]. Journal of Aerosol Science, 2014, 70: 26-35. doi: 10.1016/j.jaerosci.2013.11.007
[33] CASTOLDI L, MATARRESE R, BRAMBILLA L, et al. Effect of potassium on a model soot combustion: Raman and HRTEM evidences [J]. Aerosol Science and Technology, 2016, 50(4): 405-415. doi: 10.1080/02786826.2016.1158398
[34] ESS M N, FERRY D, KIREEVA E D, et al. In situ Raman microspectroscopic analysis of soot samples with different organic carbon content: Structural changes during heating [J]. Carbon, 2016, 105: 572-585. doi: 10.1016/j.carbon.2016.04.056
[35] SETO T, INOUE A, HIGASHI H, et al. Phase transition and restructuring of carbon nanoparticles induced by aerosol laser irradiation [J]. Carbon, 2014, 70: 224-232. doi: 10.1016/j.carbon.2013.12.111
[36] ESANGBEDO C, BOEHMAN A L, PEREZ J M. Characteristics of diesel engine soot that lead to excessive oil thickening [J]. Tribology International, 2012, 47: 194-203. doi: 10.1016/j.triboint.2011.11.003
[37] NORDMANN S, BIRMILI W, WEINHOLD K, et al. Measurements of the mass absorption cross section of atmospheric soot particles using Raman spectroscopy [J]. Journal of Geophysical Research:Atmospheres, 2013, 118(21): 12075-12085. doi: 10.1002/2013JD020021
[38] GE H W, YE Z P, HE R. Raman spectroscopy of diesel and gasoline engine-out soot using different laser power [J]. Journal of Environmental Sciences, 2019, 79: 74-80. doi: 10.1016/j.jes.2018.11.001
[39] HAN C, LIU Y C, MA J Z, et al. Effect of soot microstructure on its ozonization reactivity [J]. The Journal of Chemical Physics, 2012, 137(8): 084507. doi: 10.1063/1.4747190
[40] XU L, LIU L, ZHANG J, et al. Morphology, composition, and mixing state of individual aerosol particles in northeast China during wintertime [J]. Atmosphere, 2017, 8(12): 47. doi: 10.3390/atmos8030047
[41] DU J J, XU J W, SUN Z L, et al. Au nanoparticles grafted on Fe3O4 as effective SERS substrates for label-free detection of the 16 EPA priority polycyclic aromatic hydrocarbons [J]. Analytica Chimica Acta, 2016, 915: 81-89. doi: 10.1016/j.aca.2016.02.009
[42] AN P, YUAN C Q, LIU X H, et al. Vibrational spectroscopic identification of isoprene, pinenes and their mixture [J]. Chinese Chemical Letters, 2016, 27(4): 527-534. doi: 10.1016/j.cclet.2016.01.036
[43] EBBEN C J, STRICK B F, UPSHUR M A, et al. Towards the identification of molecular constituents associated with the surfaces of isoprene-derived secondary organic aerosol (SOA) particles [J]. Atmospheric Chemistry and Physics, 2014, 14(5): 2303-2314. doi: 10.5194/acp-14-2303-2014
[44] CHEN P F, BI X H, ZHANG J Q, et al. Assessment of heavy metal pollution characteristics and human health risk of exposure to ambient PM2.5 in Tianjin, China [J]. Particuology, 2015, 20: 104-109. doi: 10.1016/j.partic.2014.04.020
[45] AVZIANOVA E, BROOKS S D. Analysis of nickel (II) in particulate matter by Raman microspectroscopy [J]. Journal of Aerosol Science, 2014, 67: 207-214. doi: 10.1016/j.jaerosci.2013.10.003
[46] MORILLAS H, MARCAIDA I, MAGUREGUI M, et al. Identification of metals and metalloids as hazardous elements in PM2.5 and PM10 collected in a coastal environment affected by diffuse contamination [J]. Journal of Cleaner Production, 2019, 226: 369-378. doi: 10.1016/j.jclepro.2019.04.063
[47] GOIENAGA N, SARMIENTO A, OLIVARES M, et al. Emerging application of a structural and chemical analyzer for the complete characterization of metal-rich particulate matter [J]. Analytical Chemistry, 2013, 85(15): 7173-7181. doi: 10.1021/ac400878y
[48] IVLEVA N P, MCKEON U, NIESSNER R, et al. Raman microspectroscopic analysis of size-resolved atmospheric aerosol particle samples collected with an ELPI: Soot, humic-like substances, and inorganic compounds [J]. Aerosol Science and Technology, 2007, 41(7): 655-671. doi: 10.1080/02786820701376391
[49] HARPALE V M, GOSAVI R S, Raman spectroscopic investigation of multicomponent aerosols from the environment of sugar factory [C]. 3rd Biannual International Conference on Advanced Atmospheric Aerosol, 2010.
[50] SINANIS S, ALEKSANDROVA M, SCHABER K. Characterization of multicomponent aerosols by Raman spectroscopy [J]. Aerosol Science and Technology, 2011, 45(6): 751-757. doi: 10.1080/02786826.2011.559494
[51] JENTZSCH P V, CIOBOTĂ V, KAMPE B, et al. Origin of salt mixtures and mixed salts in atmospheric particulate matter [J]. Journal of Raman Spectroscopy, 2012, 43(4): 514-519. doi: 10.1002/jrs.3064
[52] STEER B, GORBUNOV B, PRICE M C, et al. Raman spectroscopic identification of size-selected airborne particles for quantitative exposure assessment [J]. Measurement Science and Technology, 2016, 27(4): 045801. doi: 10.1088/0957-0233/27/4/045801
[53] CHEN H, DUAN F K, DU J J, et al. Surface-enhanced Raman scattering for mixing state characterization of individual fine particles during a haze episode in Beijing, China [J]. Journal of Environmental Sciences, 2021, 104: 216-224. doi: 10.1016/j.jes.2020.12.008
[54] SIEPKA D, UZU G, STEFANIAK E A, et al. Combining Raman microspectrometry and chemometrics for determining quantitative molecular composition and mixing state of atmospheric aerosol particles [J]. Microchemical Journal, 2018, 137: 119-130. doi: 10.1016/j.microc.2017.10.005
[55] OFNER J, KAMILLI K A, EITENBERGER E, et al. Chemometric analysis of multisensor hyperspectral images of precipitated atmospheric particulate matter [J]. Analytical Chemistry, 2015, 87(18): 9413-9420. doi: 10.1021/acs.analchem.5b02272
[56] BATONNEAU Y, SOBANSKA S, LAUREYNS J, et al. Confocal microprobe Raman imaging of urban tropospheric aerosol particles [J]. Environmental Science & Technology, 2006, 40(4): 1300-1306.
[57] OFFROY M, MOREAU M, SOBANSKA S, et al. Pushing back the limits of Raman imaging by coupling super-resolution and chemometrics for aerosols characterization [J]. Scientific Reports, 2015, 5: 12303. doi: 10.1038/srep12303
[58] AO J P, FENG Y Q, WU S M, et al. Rapid, 3D chemical profiling of individual atmospheric aerosols with stimulated Raman scattering microscopy [J]. Small Methods, 2020, 4(2): 1900600. doi: 10.1002/smtd.201900600
[59] DENG C H, BROOKS S D, VIDAURRE G, et al. Using Raman microspectroscopy to determine chemical composition and mixing state of airborne marine aerosols over the Pacific Ocean [J]. Aerosol Science and Technology, 2014, 48(2): 193-206. doi: 10.1080/02786826.2013.867297
[60] DEBOUDT K, FLAMENT P, CHOËL M, et al. Mixing state of aerosols and direct observation of carbonaceous and marine coatings on African dust by individual particle analysis[J]. Journal of Geophysical Research: Atmospheres, 2010, 115: D24.
[61] LASKINA O, YOUNG M A, KLEIBER P D, et al. Infrared extinction spectroscopy and micro-Raman spectroscopy of select components of mineral dust mixed with organic compounds [J]. Journal of Geophysical Research:Atmospheres, 2013, 118(12): 6593-6606. doi: 10.1002/jgrd.50494
[62] LIU Y, ZHENG M, YU M Y, et al. High-time-resolution source apportionment of PM2.5 in Beijing with multiple models [J]. Atmospheric Chemistry and Physics, 2019, 19(9): 6595-6609. doi: 10.5194/acp-19-6595-2019
[63] ZHU Y H, HUANG L, LI J Y, et al. Sources of particulate matter in China: Insights from source apportionment studies published in 1987-2017 [J]. Environment International, 2018, 115: 343-357. doi: 10.1016/j.envint.2018.03.037
[64] FERRUGIARI A, TOMMASINI M, ZERBI G. Raman spectroscopy of carbonaceous particles of environmental interest [J]. Journal of Raman Spectroscopy, 2015, 46(12): 1215-1224. doi: 10.1002/jrs.4753
[65] CATELANI T, PRATESI G, ZOPPI M. Raman characterization of ambient airborne soot and associated mineral phases [J]. Aerosol Science and Technology, 2014, 48(1): 13-21. doi: 10.1080/02786826.2013.847270
[66] FENG Y Q, LIU L, YANG Y, et al. The application of Raman spectroscopy combined with multivariable analysis on source apportionment of atmospheric black carbon aerosols [J]. Science of the Total Environment, 2019, 685: 189-196. doi: 10.1016/j.scitotenv.2019.05.367
[67] POPOVICHEVA O, KIREEVA E, PERSIANTSEVA N, et al. Microscopic characterization of individual particles from multicomponent ship exhaust [J]. Journal of Environmental Monitoring, 2012, 14(12): 3101-3110. doi: 10.1039/c2em30338h
[68] WAGNER J, WANG Z M, GHOSAL S, et al. Source identification on high PM2.5 days using SEM/EDS, XRF, Raman, and windblown dust modeling [J]. Aerosol and Air Quality Research, 2019, 19(11): 2518-2530. doi: 10.4209/aaqr.2019.05.0276
[69] LIU M X, SONG Y, ZHOU T, et al. Fine particle pH during severe haze episodes in Northern China [J]. Geophysical Research Letters, 2017, 44(10): 5213-5221. doi: 10.1002/2017GL073210
[70] WEBER R J, GUO H Y, RUSSELL A G, et al. High aerosol acidity despite declining atmospheric sulfate concentrations over the past 15 years [J]. Nature Geoscience, 2016, 9(4): 282-285. doi: 10.1038/ngeo2665
[71] LIN Y H, ZHANG Z F, DOCHERTY K S, et al. Isoprene epoxydiols as precursors to secondary organic aerosol formation: Acid-catalyzed reactive uptake studies with authentic compounds [J]. Environmental Science & Technology, 2012, 46(1): 250-258.
[72] LOSEY D J, PARKER R G, FREEDMAN M A. pH dependence of liquid-liquid phase separation in organic aerosol [J]. The Journal of Physical Chemistry Letters, 2016, 7(19): 3861-3865. doi: 10.1021/acs.jpclett.6b01621
[73] FANG T, GUO H Y, ZENG L H, et al. Highly acidic ambient particles, soluble metals, and oxidative potential: A link between sulfate and aerosol toxicity [J]. Environmental Science & Technology, 2017, 51(5): 2611-2620.
[74] RINDELAUB J D, CRAIG R L, NANDY L, et al. Direct measurement of pH in individual particles via Raman microspectroscopy and variation in acidity with relative humidity [J]. The Journal of Physical Chemistry A, 2016, 120(6): 911-917. doi: 10.1021/acs.jpca.5b12699
[75] CRAIG R L, NANDY L, AXSON J L, et al. Spectroscopic determination of aerosol pH from acid-base equilibria in inorganic, organic, and mixed systems [J]. The Journal of Physical Chemistry A, 2017, 121(30): 5690-5699. doi: 10.1021/acs.jpca.7b05261
[76] CRAIG R L, PETERSON P K, NANDY L, et al. Direct determination of aerosol pH: Size-resolved measurements of submicrometer and supermicrometer aqueous particles [J]. Analytical Chemistry, 2018, 90(19): 11232-11239. doi: 10.1021/acs.analchem.8b00586
[77] LEI Z Y, BLIESNER S E, MATTSON C N, et al. Aerosol acidity sensing via polymer degradation [J]. Analytical Chemistry, 2020, 92(9): 6502-6511. doi: 10.1021/acs.analchem.9b05766
[78] CHANG P P, CHEN Z, ZHANG Y H, et al. Direct measurement of aerosol pH in individual malonic acid and citric acid droplets under different relative humidity conditions via Raman spectroscopy [J]. Chemosphere, 2020, 241: 124960. doi: 10.1016/j.chemosphere.2019.124960
[79] WEI H R, VEJERANO E P, LENG W N, et al. Aerosol microdroplets exhibit a stable pH gradient [J]. PNAS, 2018, 115(28): 7272-7277. doi: 10.1073/pnas.1720488115
[80] BOYER H C, GORKOWSKI K, SULLIVAN R C. In situ pH measurements of individual levitated microdroplets using aerosol optical tweezers [J]. Analytical Chemistry, 2020, 92(1): 1089-1096. doi: 10.1021/acs.analchem.9b04152
[81] 马金珠, 刘永春, 马庆鑫, 等. 大气非均相反应及其环境效应 [J]. 环境化学, 2011, 30(1): 97-119. doi: 10.1002/etc.379 MA J Z, LIU Y C, MA Q X, et al. Atmospheric heterogeneous reactions and their environmental effects [J]. Environmental Chemistry, 2011, 30(1): 97-119(in Chinese). doi: 10.1002/etc.379
[82] ZHAO D F, ZHU T, CHEN Q, et al. Raman micro-spectrometry as a technique for investigating heterogeneous reactions on individual atmospheric particles [J]. Science China Chemistry, 2011, 54(1): 154-160. doi: 10.1007/s11426-010-4182-x
[83] ZHU T, SHANG J, ZHAO D F. The roles of heterogeneous chemical processes in the formation of an air pollution complex and gray haze [J]. Science China Chemistry, 2011, 54(1): 145-153. doi: 10.1007/s11426-010-4181-y
[84] ZHAO D F, SONG X J, ZHU T, et al. Multiphase oxidation of SO2 by NO2 on CaCO3 particles [J]. Atmospheric Chemistry and Physics, 2018, 18(4): 2481-2493. doi: 10.5194/acp-18-2481-2018
[85] YU T, ZHAO D F, SONG X J, et al. NO2-initiated multiphase oxidation of SO2 by O2 on CaCO3 particles [J]. Atmospheric Chemistry and Physics, 2018, 18(9): 6679-6689. doi: 10.5194/acp-18-6679-2018
[86] LEE A K Y, CHAN C K. Single particle Raman spectroscopy for investigating atmospheric heterogeneous reactions of organic aerosols [J]. Atmospheric Environment, 2007, 41(22): 4611-4621. doi: 10.1016/j.atmosenv.2007.03.040
[87] LIU Y C, LIU C, MA J Z, et al. Structural and hygroscopic changes of soot during heterogeneous reaction with O3 [J]. Physical Chemistry Chemical Physics, 2010, 12(36): 10896-10903. doi: 10.1039/c0cp00402b
[88] CHU Y X, CHENG T F, GEN M S, et al. Effect of ozone concentration and relative humidity on the heterogeneous oxidation of linoleic acid particles by ozone: An insight into the interchangeability of ozone concentration and time [J]. ACS Earth and Space Chemistry, 2019, 3(5): 779-788. doi: 10.1021/acsearthspacechem.9b00002
[89] RAY D, BHATTACHARYA T S, CHATTERJEE A, et al. Hygroscopic coating of sulfuric acid shields oxidant attack on the atmospheric pollutant benzo(a)Pyrene bound to model soot particles [J]. Scientific Reports, 2018, 8: 129. doi: 10.1038/s41598-017-18292-z
[90] MA Q X, LIU Y C, LIU C, et al. Heterogeneous reaction of acetic acid on MgO, α-Al2O3, and CaCO3 and the effect on the hygroscopic behaviour of these particles [J]. Physical Chemistry Chemical Physics, 2012, 14(23): 8403. doi: 10.1039/c2cp40510e
[91] WANG X W, JING B, TAN F, et al. Hygroscopic behavior and chemical composition evolution of internally mixed aerosols composed of oxalic acid and ammonium sulfate [J]. Atmospheric Chemistry and Physics, 2017, 17(20): 12797-12812. doi: 10.5194/acp-17-12797-2017
[92] 常翩翩, 张韫宏. 气溶胶单颗粒的拉曼测量方法 [J]. 光散射学报, 2020, 32(4): 295-300. doi: 10.13883/j.issn1004-5929.202004001 CHANG P P, ZHANG Y H. Raman spectroscopy measurement for aerosol single particle [J]. The Journal of Light Scattering, 2020, 32(4): 295-300(in Chinese). doi: 10.13883/j.issn1004-5929.202004001
[93] 马庆鑫, 马金珠, 楚碧武, 等. 矿质和黑碳颗粒物表面大气非均相反应研究进展 [J]. 科学通报, 2015, 60(2): 122-136. doi: 10.1360/N972014-01190 MA Q X, MA J Z, CHU B W, et al. Current progress towards the heterogeneous reactions on mineral dust and soot [J]. Chinese Science Bulletin, 2015, 60(2): 122-136(in Chinese). doi: 10.1360/N972014-01190
[94] MA Q X, HE H. Synergistic effect in the humidifying process of atmospheric relevant calcium nitrate, calcite and oxalic acid mixtures [J]. Atmospheric Environment, 2012, 50: 97-102. doi: 10.1016/j.atmosenv.2011.12.057
[95] MA Q X, HE H, LIU Y C, et al. Heterogeneous and multiphase formation pathways of gypsum in the atmosphere [J]. Physical Chemistry Chemical Physics, 2013, 15(44): 19196-19204. doi: 10.1039/c3cp53424c
[96] WU F M, WANG X W, JING B, et al. Liquid-liquid phase separation in internally mixed magnesium sulfate/glutaric acid particles [J]. Atmospheric Environment, 2018, 178: 286-292. doi: 10.1016/j.atmosenv.2018.02.012
[97] FLEISCHMANN M, HENDRA P J, MCQUILLAN A J. Raman spectra of pyridine adsorbed at a silver electrode [J]. Chemical Physics Letters, 1974, 26(2): 163-166. doi: 10.1016/0009-2614(74)85388-1
[98] AYORA M J, BALLESTEROS L, PÉREZ R, et al. Detection of atmospheric contaminants in aerosols by surface-enhanced Raman spectrometry [J]. Analytica Chimica Acta, 1997, 355(1): 15-21. doi: 10.1016/S0003-2670(97)81607-8
[99] CRAIG R L, BONDY A L, AULT A P. Surface enhanced Raman spectroscopy enables observations of previously undetectable secondary organic aerosol components at the individual particle level [J]. Analytical Chemistry, 2015, 87(15): 7510-7514. doi: 10.1021/acs.analchem.5b01507
[100] FU Y, KUPPE C, VALEV V K, et al. Surface-enhanced Raman spectroscopy: A facile and rapid method for the chemical component study of individual atmospheric aerosol [J]. Environmental Science & Technology, 2017, 51(11): 6260-6267.
[101] DONG X, OHNOUTEK L, YANG Y, et al. Cu/Ag Sphere Segment Void Array as Efficient Surface Enhanced Raman Spectroscopy Substrate for Detecting Individual Atmospheric Aerosol [J]. Analytical Chemistry, 2019, 91(21): 13647-13657. doi: 10.1021/acs.analchem.9b02840
[102] GEN M S, CHAN C K. Electrospray surface-enhanced Raman spectroscopy (ES-SERS) for probing surface chemical compositions of atmospherically relevant particles [J]. Atmospheric Chemistry and Physics, 2017, 17(22): 14025-14037. doi: 10.5194/acp-17-14025-2017
[103] GEN M S, KUNIHISA R, MATSUKI A, et al. Electrospray surface-enhanced Raman spectroscopy (ES-SERS) for studying organic coatings of atmospheric aerosol particles [J]. Aerosol Science and Technology, 2019, 53(7): 760-770. doi: 10.1080/02786826.2019.1597964
[104] PHAN-QUANG G C, LEE H K, TENG H W, et al. Plasmonic hotspots in air: An omnidirectional three-dimensional platform for stand-off in-air SERS sensing of airborne species [J]. Angwandte Chemie (International Ed. in English), 2018, 57(20): 5792-5796. doi: 10.1002/anie.201802214
[105] PHAN-QUANG G C, YANG N C, LEE H K, et al. Tracking airborne molecules from afar: Three-dimensional metal-organic framework-surface-enhanced Raman scattering platform for stand-off and real-time atmospheric monitoring [J]. ACS Nano, 2019, 13(10): 12090-12099. doi: 10.1021/acsnano.9b06486
[106] JONES R R, HOOPER D C, ZHANG L W, et al. Raman techniques: Fundamentals and frontiers [J]. Nanoscale Research Letters, 2019, 14(1): 231. doi: 10.1186/s11671-019-3039-2
[107] LIU R, LIU J F, ZHOU X X, et al. Applications of Raman-based techniques to on-site and in-vivo analysis [J]. Trends in Analytical Chemistry, 2011, 30 (9):1462-1476 . DOI: 10.1016/j.trac.2011.06.011
[108] OFNER J, DECKERT-GAUDIG T, KAMILLI K A, et al. Tip-enhanced Raman spectroscopy of atmospherically relevant aerosol nanoparticles [J]. Analytical Chemistry, 2016, 88(19): 9766-9772. doi: 10.1021/acs.analchem.6b02760