[1] |
BIRUK L N, MORETTON J, FABRIZIO de IORIO A, et al. Toxicity and genotoxicity assessment in sediments from the Matanza-Riachuelo river basin (Argentina) under the influence of heavy metals and organic contaminants [J]. Ecotoxicology and Environmental Safety, 2017, 135: 302-311. doi: 10.1016/j.ecoenv.2016.09.024
|
[2] |
RASHEED T, BILAL M, NABEEL F, et al. Fluorescent sensor based models for the detection of environmentally-related toxic heavy metals [J]. Science of the Total Environment, 2018, 615: 476-485. doi: 10.1016/j.scitotenv.2017.09.126
|
[3] |
KIM S, ALIZAMIR M, ZOUNEMAT-KERMANI M, et al. Assessing the biochemical oxygen demand using neural networks and ensemble tree approaches in South Korea [J]. Journal of Environmental Management, 2020, 270: 110834. doi: 10.1016/j.jenvman.2020.110834
|
[4] |
ABEYSIRIWARDANA-ARACHCHIGE I S A, NIRMALAKHANDAN N. Predicting removal kinetics of biochemical oxygen demand (BOD) and nutrients in a pilot scale fed-batch algal wastewater treatment system [J]. Algal Research, 2019, 43: 101643. doi: 10.1016/j.algal.2019.101643
|
[5] |
JORDAN M A, WELSH D T, JOHN R, et al. A sensitive ferricyanide-mediated biochemical oxygen demand assay for analysis of wastewater treatment plant influents and treated effluents [J]. Water Research, 2013, 47(2): 841-849. doi: 10.1016/j.watres.2012.11.010
|
[6] |
PONOMAREVA O N, ARLYAPOV V A, ALFEROV V A, et al. Microbial biosensors for detection of biological oxygen demand (a Review) [J]. Applied Biochemistry and Microbiology, 2011, 47(1): 1-11. doi: 10.1134/S0003683811010108
|
[7] |
JOUANNEAU S, RECOULES L, DURAND M J, et al. Methods for assessing biochemical oxygen demand (BOD): A review [J]. Water Research, 2014, 49: 62-82. doi: 10.1016/j.watres.2013.10.066
|
[8] |
SU L, JIA W Z, HOU C J, et al. Microbial biosensors: A review [J]. Biosensors and Bioelectronics, 2011, 26(5): 1788-1799. doi: 10.1016/j.bios.2010.09.005
|
[9] |
曹阳. 稀释与接种法测定BOD5的探讨[J]. 环境工程, 2014, 32(增刊1): 138-140.
CAO Y. Discussion on determination of BOD5 by means of dilution and inoculation[J]. Environmental Engineering, 2014, 32(Sup 1): 138-140(in Chinese).
|
[10] |
康小虎, 冷艳, 曾小英, 等. 污水处理活性污泥微生物群落研究进展 [J]. 环境科学与技术, 2020, 43(5): 49-54.
KANG X H, LENG Y, ZENG X Y, et al. Review on activated sludge microbial community in sewage treatment [J]. Environmental Science & Technology, 2020, 43(5): 49-54(in Chinese).
|
[11] |
HUSSAIN F, YU H W, CHON K, et al. Real-time biomonitoring of oxygen uptake rate and biochemical oxygen demand using a novel optical biogas respirometric system [J]. Journal of Environmental Management, 2021, 277: 111467. doi: 10.1016/j.jenvman.2020.111467
|
[12] |
陈立湘, 柯水洲, 朱佳, 等. 亚铁活化过硫酸钠氧化预处理电镀废水 [J]. 化工环保, 2019, 39(2): 148-152. doi: 10.3969/j.issn.1006-1878.2019.02.006
CHEN L X, KE S Z, ZHU J, et al. Pretreatment of electroplating wastewater by ferrous-activated sodium persulfate oxidation [J]. Environmental Protection of Chemical Industry, 2019, 39(2): 148-152(in Chinese). doi: 10.3969/j.issn.1006-1878.2019.02.006
|
[13] |
SARAVANAN N, SASIKUMAR K S K. Waste water treatment process using Nano TiO2 [J]. Materials Today:Proceedings, 2020, 33: 2570-2572. doi: 10.1016/j.matpr.2019.12.143
|
[14] |
FAISAL G H, JAEEL A J, AL-GASHAM T S. BOD and COD reduction using porous concrete pavements [J]. Case Studies in Construction Materials, 2020, 13: e00396. doi: 10.1016/j.cscm.2020.e00396
|
[15] |
PAHLAVANZADEH S, ZOROUFCHI BENIS K, SHAKERKHATIBI M, et al. Performance and kinetic modeling of an aerated submerged fixed-film bioreactor for BOD and nitrogen removal from municipal wastewater [J]. Journal of Environmental Chemical Engineering, 2018, 6(5): 6154-6164. doi: 10.1016/j.jece.2018.09.045
|
[16] |
RAUD M, TENNO T, JÕGI E, et al. Comparative study of semi-specific Aeromonas hydrophila and universal Pseudomonas fluorescens biosensors for BOD measurements in meat industry wastewaters [J]. Enzyme and Microbial Technology, 2012, 50(4/5): 221-226.
|
[17] |
BURGE S R, HRISTOVSKI K D, BURGE R G, et al. Microbial potentiometric sensor: A new approach to longstanding challenges [J]. Science of the Total Environment, 2020, 742: 140528. doi: 10.1016/j.scitotenv.2020.140528
|
[18] |
LIU J, MATTIASSON B. Microbial BOD sensors for wastewater analysis [J]. Water Research, 2002, 36(15): 3786-3802. doi: 10.1016/S0043-1354(02)00101-X
|
[19] |
ARLYAPOV V A, KHARKOVA A S, KURBANALIYEVA S K, et al. Use of biocompatible redox-active polymers based on carbon nanotubes and modified organic matrices for development of a highly sensitive BOD biosensor [J]. Enzyme and Microbial Technology, 2021, 143: 109706. doi: 10.1016/j.enzmictec.2020.109706
|
[20] |
ARLYAPOV V, KAMANIN S, PONAMOREVA O, et al. Biosensor analyzer for BOD index express control on the basis of the yeast microorganisms Candida maltosa, Candida blankii, and Debaryomyces hansenii [J]. Enzyme and Microbial Technology, 2012, 50(4/5): 215-220.
|
[21] |
OOTA S, HATAE Y, AMADA K, et al. Development of mediated BOD biosensor system of flow injection mode for shochu distillery wastewater [J]. Biosensors and Bioelectronics, 2010, 26(1): 262-266. doi: 10.1016/j.bios.2010.06.040
|
[22] |
LI Y J, SUN J Z, WANG J F, et al. A microbial electrode based on the co-electrodeposition of carboxyl graphene and Au nanoparticles for BOD rapid detection [J]. Biochemical Engineering Journal, 2017, 123: 86-94. doi: 10.1016/j.bej.2017.03.015
|
[23] |
SAKAGUCHI T, KITAGAWA K, ANDO T, et al. A rapid BOD sensing system using luminescent recombinants of Escherichia coli [J]. Biosensors and Bioelectronics, 2003, 19(2): 115-121. doi: 10.1016/S0956-5663(03)00170-2
|
[24] |
BOLLELLA P, LUDWIG R, GORTON L. Cellobiose dehydrogenase: Insights on the nanostructuration of electrodes for improved development of biosensors and biofuel cells [J]. Applied Materials Today, 2017, 9: 319-332. doi: 10.1016/j.apmt.2017.08.009
|
[25] |
KIM M N, PARK K H. Immobilization of enzymes for Klebsiella BOD sensor [J]. Sensors and Actuators B:Chemical, 2004, 98(1): 1-4. doi: 10.1016/j.snb.2003.07.001
|
[26] |
LIU L, DENG L, YONG D M, et al. Native biofilm cultured under controllable condition and used in mediated method for BOD measurement [J]. Talanta, 2011, 84(3): 895-899. doi: 10.1016/j.talanta.2011.02.025
|
[27] |
NIYOMDECHA S, LIMBUT W, NUMNUAM A, et al. A novel BOD biosensor based on entrapped activated sludge in a porous chitosan-albumin cryogel incorporated with graphene and methylene blue [J]. Sensors and Actuators B:Chemical, 2017, 241: 473-481. doi: 10.1016/j.snb.2016.10.102
|
[28] |
IVANDINI T A, SAEPUDIN E, WARDAH H, et al. Development of a biochemical oxygen demand sensor using gold-modified boron doped diamond electrodes [J]. Analytical Chemistry, 2012, 84(22): 9825-9832. doi: 10.1021/ac302090y
|
[29] |
ZAITSEVA A S, ARLYAPOV V A, YUDINA N Y, et al. Use of one-and two-mediator systems for developing a BOD biosensor based on the yeast Debaryomyces hansenii [J]. Enzyme and Microbial Technology, 2017, 98: 43-51. doi: 10.1016/j.enzmictec.2016.12.005
|
[30] |
LIU L, ZHAI J F, ZHU C Z, et al. One-pot synthesis of 3-dimensional reduced graphene oxide-based hydrogel as support for microbe immobilization and BOD biosensor preparation [J]. Biosensors and Bioelectronics, 2015, 63: 483-489. doi: 10.1016/j.bios.2014.07.074
|
[31] |
ZAITSEVA A S, ARLYAPOV V A, YUDINA N Y, et al. A novel Bod-mediator biosensor based on Ferrocene and Debaryomyces hansenii yeast cells [J]. Applied Biochemistry and Microbiology, 2017, 53(3): 381-387. doi: 10.1134/S0003683817030152
|
[32] |
YUDINA N Y, ARLYAPOV V A, CHEPURNOVA M A, et al. A yeast co-culture-based biosensor for determination of waste water contamination levels [J]. Enzyme and Microbial Technology, 2015, 78: 46-53. doi: 10.1016/j.enzmictec.2015.06.008
|
[33] |
徐忠强, 郝瑞霞, 任晓克, 等. 包埋法固定化细胞技术用于三维电极生物膜反应器 [J]. 中国给水排水, 2018, 34(19): 37-42.
XU Z Q, HAO R X, REN X K, et al. Application of entrapping method in three-dimensional biofilm-electrode reactor for advanced nitrogen removal [J]. China Water & Wastewater, 2018, 34(19): 37-42(in Chinese).
|
[34] |
李一锦, 夏善红. BOD微生物传感器关键技术及其发展 [J]. 传感器与微系统, 2015, 34(7): 5-10. doi: 10.13873/J.1000-9787(2015)07-0005-06
LI Y J, XIA S H. Key techniques of BOD microbial sensor and its development [J]. Transducer and Microsystem Technologies, 2015, 34(7): 5-10(in Chinese). doi: 10.13873/J.1000-9787(2015)07-0005-06
|
[35] |
DHALL P, KUMAR A, JOSHI A, et al. Quick and reliable estimation of BOD load of beverage industrial wastewater by developing BOD biosensor [J]. Sensors and Actuators B:Chemical, 2008, 133(2): 478-483. doi: 10.1016/j.snb.2008.03.010
|
[36] |
KWOK N Y, DONG S J, LO W, et al. An optical biosensor for multi-sample determination of biochemical oxygen demand (BOD) [J]. Sensors and Actuators B:Chemical, 2005, 110(2): 289-298. doi: 10.1016/j.snb.2005.02.007
|
[37] |
JIA J B, TANG M Y, CHEN X, et al. Co-immobilized microbial biosensor for BOD estimation based on Sol-gel derived composite material [J]. Biosensors and Bioelectronics, 2003, 18(8): 1023-1029. doi: 10.1016/S0956-5663(02)00225-7
|
[38] |
SAKAGUCHI T, MORIOKA Y, YAMASAKI M, et al. Rapid and onsite BOD sensing system using luminous bacterial cells-immobilized chip [J]. Biosensors and Bioelectronics, 2007, 22(7): 1345-1350. doi: 10.1016/j.bios.2006.06.008
|
[39] |
ZHAO L, HE L, CHEN S J, et al. Microbial BOD sensors based on Zr(Ⅳ)-loaded collagen fiber [J]. Enzyme and Microbial Technology, 2017, 98: 52-57. doi: 10.1016/j.enzmictec.2016.11.010
|
[40] |
ISMAIL Z Z, KHUDHAIR H A. Biotreatment of real petroleum wastewater using non-acclimated immobilized mixed cells in spouted bed bioreactor [J]. Biochemical Engineering Journal, 2018, 131: 17-23. doi: 10.1016/j.bej.2017.12.005
|
[41] |
王永军, 付文强, 薛屏. 利用磁性固定化微生物降解水中微量油 [J]. 化学工程, 2017, 45(9): 7-12. doi: 10.3969/j.issn.1005-9954.2017.09.002
WANG Y J, FU W Q, XUE P. Degradation of trace oil in water using magnetic immobilized microorganism [J]. Chemical Engineering (China), 2017, 45(9): 7-12(in Chinese). doi: 10.3969/j.issn.1005-9954.2017.09.002
|
[42] |
ABREVAYA X C, SACCO N J, BONETTO M C, et al. Analytical applications of microbial fuel cells. Part I: Biochemical oxygen demand [J]. Biosensors and Bioelectronics, 2015, 63: 580-590. doi: 10.1016/j.bios.2014.04.034
|
[43] |
KIM M, YOUN S M, SHIN S H, et al. Practical field application of a novel BOD monitoring system [J]. Journal of Environmental Monitoring, 2003, 5(4): 640-643. doi: 10.1039/b304583h
|
[44] |
KUMAR S S, KUMAR V, KUMAR R, et al. Microbial fuel cells as a sustainable platform technology for bioenergy, biosensing, environmental monitoring, and other low power device applications [J]. Fuel, 2019, 255: 115682. doi: 10.1016/j.fuel.2019.115682
|
[45] |
GAO Y Y, YIN F J, MA W Q, et al. Rapid detection of biodegradable organic matter in polluted water with microbial fuel cell sensor: Method of partial coulombic yield [J]. Bioelectrochemistry, 2020, 133: 107488. doi: 10.1016/j.bioelechem.2020.107488
|
[46] |
PALANISAMY G, JUNG H Y, SADHASIVAM T, et al. A comprehensive review on microbial fuel cell technologies: Processes, utilization, and advanced developments in electrodes and membranes [J]. Journal of Cleaner Production, 2019, 221: 598-621. doi: 10.1016/j.jclepro.2019.02.172
|
[47] |
ALMATOUQ A, BABATUNDE A O, KHAJAH M, et al. Microbial community structure of anode electrodes in microbial fuel cells and microbial electrolysis cells [J]. Journal of Water Process Engineering, 2020, 34: 101140. doi: 10.1016/j.jwpe.2020.101140
|
[48] |
MOUSAVI M R, GHASEMI S, SANAEE Z, et al. Improvement of the microfluidic microbial fuel cell using a nickel nanostructured electrode and microchannel modifications [J]. Journal of Power Sources, 2019, 437: 226891. doi: 10.1016/j.jpowsour.2019.226891
|
[49] |
SIM J, REID R, HUSSAIN A, et al. Semi-continuous measurement of oxygen demand in wastewater using biofilm-capacitance [J]. Bioresource Technology Reports, 2018, 3: 231-237. doi: 10.1016/j.biteb.2018.08.009
|
[50] |
TRAN T V, LEE I C, KIM K. Electricity production characterization of a Sediment Microbial Fuel Cell using different thermo-treated flat carbon cloth electrodes [J]. International Journal of Hydrogen Energy, 2019, 44(60): 32192-32200. doi: 10.1016/j.ijhydene.2019.10.076
|
[51] |
GUO F, LIU Y, LIU H. Hibernations of electroactive bacteria provide insights into the flexible and robust BOD detection using microbial fuel cell-based biosensors [J]. Science of the Total Environment, 2021, 753: 142244. doi: 10.1016/j.scitotenv.2020.142244
|
[52] |
CHOUDHURY P, UDAY U S P, MAHATA N, et al. Performance improvement of microbial fuel cells for waste water treatment along with value addition: A review on past achievements and recent perspectives [J]. Renewable and Sustainable Energy Reviews, 2017, 79: 372-389. doi: 10.1016/j.rser.2017.05.098
|
[53] |
LIU J, QIAO Y, GUO C X, et al. Graphene/carbon cloth anode for high-performance mediatorless microbial fuel cells [J]. Bioresource Technology, 2012, 114: 275-280. doi: 10.1016/j.biortech.2012.02.116
|
[54] |
DERRIEN M, BROGI S R, GONÇALVES-ARAUJO R. Characterization of aquatic organic matter: Assessment, perspectives and research priorities [J]. Water Research, 2019, 163: 114908. doi: 10.1016/j.watres.2019.114908
|
[55] |
李彦澄, 刘邓平, 李蕾, 等. 难降解有机物微生物共代谢技术研究进展 [J]. 现代化工, 2019, 39(11): 25-28,34. doi: 10.16606/j.cnki.issn0253-4320.2019.11.006
LI Y C, LIU D P, LI L, et al. Advances in co-metabolic technology of refractory organic pollutants and micro-organisms [J]. Modern Chemical Industry, 2019, 39(11): 25-28,34(in Chinese). doi: 10.16606/j.cnki.issn0253-4320.2019.11.006
|
[56] |
王梦乔, 周庆, 李爱民. 环境水体微污染有机物及其去除技术研究进展 [J]. 环境污染与防治, 2012, 34(6): 71-76,96. doi: 10.3969/j.issn.1001-3865.2012.06.016
WANG M Q, ZHOU Q, LI A M. A review of organic micro pollutants in aquatic environment and its removal technologies [J]. Environmental Pollution & Control, 2012, 34(6): 71-76,96(in Chinese). doi: 10.3969/j.issn.1001-3865.2012.06.016
|
[57] |
韩严和, 翟跃华, 阮修莉, 等. 微生物降解前后COD差值法快速测定BOD [J]. 环境工程学报, 2014, 8(9): 4035-4039.
HAN Y H, ZHAI Y H, RUAN X L, et al. Rapid detection of BOD with difference of COD before and after activated sludge aeration [J]. Chinese Journal of Environmental Engineering, 2014, 8(9): 4035-4039(in Chinese).
|
[58] |
JIN X W, LI Z Y, XU P P, et al. Advances in microfluidic biosensors based on luminescent bacteria [J]. Chinese Journal of Analytical Chemistry, 2019, 47(2): 181-189. doi: 10.1016/S1872-2040(19)61139-4
|
[59] |
MA X Y, WANG X C, NGO H H, et al. Bioassay based luminescent bacteria: Interferences, improvements, and applications [J]. Science of the Total Environment, 2014, 468/469: 1-11. doi: 10.1016/j.scitotenv.2013.08.028
|
[60] |
YE Z F, ZHAO Q L, ZHANG M H, et al. Acute toxicity evaluation of explosive wastewater by bacterial bioluminescence assays using a freshwater luminescent bacterium, Vibrio qinghaiensis sp. Nov [J]. Journal of Hazardous Materials, 2011, 186(2/3): 1351-1354.
|
[61] |
XU Y Q, LIU S S, LI K, et al. Polyethylene glycol 400 significantly enhances the stimulation of 2-phenoxyethanol on Vibrio qinghaiensis sp.-Q67 bioluminescence [J]. Ecotoxicology and Environmental Safety, 2019, 171: 240-246. doi: 10.1016/j.ecoenv.2018.12.087
|
[62] |
MOHSENI M, ABBASZADEH J, MAGHOOL S S, et al. Heavy metals detection using biosensor cells of a novel marine luminescent bacterium Vibrio sp. MM1 isolated from the Caspian Sea [J]. Ecotoxicology and Environmental Safety, 2018, 148: 555-560. doi: 10.1016/j.ecoenv.2017.11.002
|
[63] |
MENZ J, SCHNEIDER M, KÜMMERER K. Toxicity testing with luminescent bacteria - Characterization of an automated method for the combined assessment of acute and chronic effects [J]. Chemosphere, 2013, 93(6): 990-996. doi: 10.1016/j.chemosphere.2013.05.067
|
[64] |
MA K, QIN Z, ZHAO Z Q, et al. Toxicity evaluation of wastewater collected at different treatment stages from a pharmaceutical industrial park wastewater treatment plant [J]. Chemosphere, 2016, 158: 163-170. doi: 10.1016/j.chemosphere.2016.05.052
|
[65] |
LIU X X, WANG Y, CHEN H, et al. Acute toxicity and associated mechanisms of four strobilurins in algae [J]. Environmental Toxicology and Pharmacology, 2018, 60: 12-16. doi: 10.1016/j.etap.2018.03.021
|
[66] |
ROY B, SURESH P K, CHANDRASEKARAN N, et al. Antibiotic tetracycline enhanced the toxic potential of photo catalytically active P25 titanium dioxide nanoparticles towards freshwater algae Scenedesmus obliquus [J]. Chemosphere, 2021, 267: 128923. doi: 10.1016/j.chemosphere.2020.128923
|
[67] |
郐安琪, 赵伟华, 李青云, 等. 典型污染物对藻类生态毒性效应研究进展 [J]. 长江科学院院报, 2015, 32(6): 100-109.
KUAI A Q, ZHAO W H, LI Q Y, et al. Research advances in ecotoxicological effects of typical pollutants on algae [J]. Journal of Yangtze River Scientific Research Institute, 2015, 32(6): 100-109(in Chinese).
|
[68] |
GAN T T, ZHAO N J, YIN G F, et al. Optimal chlorophyll fluorescence parameter selection for rapid and sensitive detection of lead toxicity to marine microalgae Nitzschia Closterium based on chlorophyll fluorescence technology [J]. Journal of Photochemistry and Photobiology B:Biology, 2019, 197: 111551. doi: 10.1016/j.jphotobiol.2019.111551
|
[69] |
何莹, 楚梦玮, 刘洋, 等. 铜及氧化铜纳米颗粒对浮萍、藻类的毒性效应及机理研究进展 [J]. 生态毒理学报, 2020, 15(4): 56-65.
HE Y, CHU M W, LIU Y, et al. Toxicity and the underlying mechanisms of copper and copper oxide nanoparticles to duckweed and algae: A review [J]. Asian Journal of Ecotoxicology, 2020, 15(4): 56-65(in Chinese).
|
[70] |
LI Y Y, LIU X L, ZHENG X W, et al. Toxic effects and mechanisms of PFOA and its substitute GenX on the photosynthesis of Chlorella pyrenoidosa [J]. Science of the Total Environment, 2021, 765: 144431. doi: 10.1016/j.scitotenv.2020.144431
|
[71] |
SALAS P, ODZAK N, ECHEGOYEN Y, et al. The role of size and protein shells in the toxicity to algal photosynthesis induced by ionic silver delivered from silver nanoparticles [J]. Science of the Total Environment, 2019, 692: 233-239. doi: 10.1016/j.scitotenv.2019.07.237
|
[72] |
SURESH KUMAR K, DAHMS H U, LEE J S, et al. Algal photosynthetic responses to toxic metals and herbicides assessed by chlorophyll a fluorescence [J]. Ecotoxicology and Environmental Safety, 2014, 104: 51-71. doi: 10.1016/j.ecoenv.2014.01.042
|
[73] |
CAMARGO J A, ALONSO A, SALAMANCA A. Nitrate toxicity to aquatic animals: A review with new data for freshwater invertebrates [J]. Chemosphere, 2005, 58(9): 1255-1267. doi: 10.1016/j.chemosphere.2004.10.044
|
[74] |
YANG C, SONG G, LIM W. A review of the toxicity in fish exposed to antibiotics [J]. Comparative Biochemistry and Physiology Part C:Toxicology & Pharmacology, 2020, 237: 108840.
|
[75] |
CARNEY ALMROTH B, CARTINE J, JÖNANDER C, et al. Assessing the effects of textile leachates in fish using multiple testing methods: From gene expression to behavior [J]. Ecotoxicology and Environmental Safety, 2021, 207: 111523. doi: 10.1016/j.ecoenv.2020.111523
|
[76] |
陈建华, 谢艳颖, 陈世红, 等. 茶多酚对壬基酚所致斑马鱼急性死亡和遗传损伤的保护作用 [J]. 环境污染与防治, 2018, 40(10): 1126-1131. doi: 10.15985/j.cnki.1001-3865.2018.10.010
CHEN J H, XIE Y Y, CHEN S H, et al. The protection of Danio rerio from acute lethal toxicity and genetic damage induced by nonylphenol through tea polyphenol [J]. Environmental Pollution & Control, 2018, 40(10): 1126-1131(in Chinese). doi: 10.15985/j.cnki.1001-3865.2018.10.010
|
[77] |
朱燕华, 王钟凰, 李昱宗, 等. 基于斑马鱼胚胎急性毒性测试预测食用油毒性可行性研究 [J]. 中国油脂, 2020, 45(12): 71-75. doi: 10.12166/j.zgyz.1003-7969/2020.12.014
ZHU Y H, WANG Z H, LI Y Z, et al. A feasibility study on predicting the toxicity of edible oils using zebrafish embryos [J]. China Oils and Fats, 2020, 45(12): 71-75(in Chinese). doi: 10.12166/j.zgyz.1003-7969/2020.12.014
|
[78] |
MALEV O, LOVRIĆ M, STIPANIČEV D, et al. Toxicity prediction and effect characterization of 90 pharmaceuticals and illicit drugs measured in plasma of fish from a major European river (Sava, Croatia) [J]. Environmental Pollution, 2020, 266: 115162. doi: 10.1016/j.envpol.2020.115162
|
[79] |
GRABDA E, EINSZPORN-ORECKA T, FELIŃSKA C, et al. Experimental methemoglobinemia in rainbow trout [J]. Acta Ichthyologica et Piscatoria, 1974, 4(2): 43-71. doi: 10.3750/AIP1974.04.2.05
|
[80] |
许阳光, 李学锋, 张文吉, 等. 低浓度醚菊酯对鲤鱼生长及生理生化指标的影响 [J]. 农药, 2005, 44(3): 105-107. doi: 10.3969/j.issn.1006-0413.2005.03.003
XU Y G, LI X F, ZHANG W J, et al. Effects of low concentrations of ethofenprox on physiological and bio- chemical parameters and growth of carp [J]. Pesticides, 2005, 44(3): 105-107(in Chinese). doi: 10.3969/j.issn.1006-0413.2005.03.003
|
[81] |
BABIĆ S, BARIŠIĆ J, STIPANIČEV D, et al. Assessment of river sediment toxicity: Combining empirical zebrafish embryotoxicity testing with in silico toxicity characterization [J]. Science of the Total Environment, 2018, 643: 435-450. doi: 10.1016/j.scitotenv.2018.06.124
|
[82] |
NEWBOLD L R, SHI X T, HOU Y Q, et al. Swimming performance and behaviour of bighead carp (Hypophthalmichthys nobilis): Application to fish passage and exclusion criteria [J]. Ecological Engineering, 2016, 95: 690-698. doi: 10.1016/j.ecoleng.2016.06.119
|
[83] |
ROUNTOS K J, KIM J J, HATTENRATH-LEHMANN T K, et al. Effects of the harmful algae, Alexandrium Catenella and Dinophysis acuminata, on the survival, growth, and swimming activity of early life stages of forage fish [J]. Marine Environmental Research, 2019, 148: 46-56. doi: 10.1016/j.marenvres.2019.04.013
|
[84] |
GOUNDADKAR B B, KATTI P. Environmental estrogen(s) induced swimming behavioural alterations in adult zebrafish (Danio rerio) [J]. Environmental Toxicology and Pharmacology, 2017, 54: 146-154. doi: 10.1016/j.etap.2017.07.001
|
[85] |
AL SHURAIQI A, AL-HABSI A, BARRY M J. Time-, dose- and transgenerational effects of fluoxetine on the behavioural responses of zebrafish to a conspecific alarm substance [J]. Environmental Pollution, 2021, 270: 116164. doi: 10.1016/j.envpol.2020.116164
|
[86] |
ZHAO R B, HU Y Y, LI B, et al. Potential effects of internal physio-ecological changes on the online biomonitoring of water quality: The behavior responses with circadian rhythms of zebrafish (Danio rerio) to different chemicals [J]. Chemosphere, 2020, 239: 124752. doi: 10.1016/j.chemosphere.2019.124752
|
[87] |
CHAE Y, AN Y J. Toxicity and transfer of polyvinylpyrrolidone-coated silver nanowires in an aquatic food chain consisting of algae, water fleas, and zebrafish [J]. Aquatic Toxicology, 2016, 173: 94-104. doi: 10.1016/j.aquatox.2016.01.011
|
[88] |
YU Y J, LI X F, YANG G L, et al. Joint toxic effects of cadmium and four pesticides on the earthworm (Eisenia fetida) [J]. Chemosphere, 2019, 227: 489-495. doi: 10.1016/j.chemosphere.2019.04.064
|
[89] |
van der VEN L T M, SCHOONEN W G, GROOT R M, et al. The effects of aliphatic alcohols and related acid metabolites in zebrafish embryos - correlations with rat developmental toxicity and with effects in advanced life stages in fish [J]. Toxicology and Applied Pharmacology, 2020, 407: 115249. doi: 10.1016/j.taap.2020.115249
|
[90] |
ZHANG Y, MA J, ZHOU S Y, et al. Concentration-dependent toxicity effect of SDBS on swimming behavior of freshwater fishes [J]. Environmental Toxicology and Pharmacology, 2015, 40(1): 77-85. doi: 10.1016/j.etap.2015.05.005
|
[91] |
ZHANG Y, GUO X, SI X H, et al. Environmentally persistent free radical generation on contaminated soil and their potential biotoxicity to luminous bacteria [J]. Science of the Total Environment, 2019, 687: 348-354. doi: 10.1016/j.scitotenv.2019.06.137
|
[92] |
ZHAO L J, XIE J F, ZHANG H, et al. Enzymatic activity and chlorophyll fluorescence imaging of maize seedlings(Zea mays L.) after exposure to low doses of chlorsulfuron and cadmium [J]. Journal of Integrative Agriculture, 2018, 17(4): 826-836. doi: 10.1016/S2095-3119(17)61717-9
|
[93] |
YU D B, BAI L, ZHAI J F, et al. Toxicity detection in water containing heavy metal ions with a self-powered microbial fuel cell-based biosensor [J]. Talanta, 2017, 168: 210-216. doi: 10.1016/j.talanta.2017.03.048
|
[94] |
LU H B, YU Y, XI H B, et al. Bacterial response to formaldehyde in an MFC toxicity sensor [J]. Enzyme and Microbial Technology, 2020, 140: 109565. doi: 10.1016/j.enzmictec.2020.109565
|
[95] |
吴立冬, 刘玲, 李丹, 等. 基于亚甲基蓝的水体急性毒性快速检测方法研究 [J]. 分析化学, 2016, 44(9): 1354-1358. doi: 10.11895/j.issn.0253-3820.160245
WU L D, LIU L, LI D, et al. A new microbial biosensor for detecting and monitoring water acute toxicity based on methylene blue [J]. Chinese Journal of Analytical Chemistry, 2016, 44(9): 1354-1358(in Chinese). doi: 10.11895/j.issn.0253-3820.160245
|
[96] |
FUJIMOTO H, WAKABAYASHI M, YAMASHIRO H, et al. Whole-cell arsenite biosensor using photosynthetic bacterium Rhodovulum sulfidophilum [J]. Applied Microbiology and Biotechnology, 2006, 73(2): 332-338. doi: 10.1007/s00253-006-0483-6
|
[97] |
LIMAN R, ACIKBAS Y, CIĞERCI İ H. Cytotoxicity and genotoxicity of cerium oxide micro and nanoparticles by Allium and Comet tests [J]. Ecotoxicology and Environmental Safety, 2019, 168: 408-414. doi: 10.1016/j.ecoenv.2018.10.088
|
[98] |
ZHANG Z S, WANG X M, LI J F, et al. Inhibitory effects of Enteromorpha linza polysaccharide on micronucleus of Allium sativum root cells [J]. International Journal of Biological Macromolecules, 2016, 87: 252-255. doi: 10.1016/j.ijbiomac.2016.02.065
|
[99] |
XIAN J N, WANG A L, MIAO Y T, et al. Flow cytometric analysis of in vitro cytotoxicity of cadmium in haemocytes from the tiger shrimp, Penaeus monodon [J]. Bulletin of Environmental Contamination and Toxicology, 2013, 90(1): 46-50. doi: 10.1007/s00128-012-0839-9
|
[100] |
陈亚松, 张超, 陈振国, 等. 基于耗氧速率预警重金属对活性污泥的抑制性 [J]. 环境工程, 2015, 33(2): 27-31,52.
CHEN Y S, ZHANG C, CHEN Z G, et al. Early warning of activated sludge inhibitory action by heavy metals based on oxygen uptake rate index [J]. Environmental Engineering, 2015, 33(2): 27-31,52(in Chinese).
|
[101] |
XU M, LI J F, LIU B C, et al. The evaluation of long term performance of microbial fuel cell based Pb toxicity shock sensor [J]. Chemosphere, 2021, 270: 129455. doi: 10.1016/j.chemosphere.2020.129455
|
[102] |
PAN J Y, HU J P, LIU B C, et al. Enhanced quorum sensing of anode biofilm for better sensing linearity and recovery capability of microbial fuel cell toxicity sensor [J]. Environmental Research, 2020, 181: 108906. doi: 10.1016/j.envres.2019.108906
|