[1] CHEN J, YING G G, DENG W J. Antibiotic residues in food: Extraction, analysis, and human health concerns [J]. Journal of Agricultural and Food Chemistry, 2019, 67(27): 7569-7586. doi: 10.1021/acs.jafc.9b01334
[2] KOVALAKOVA P, CIZMAS L, MCDONALD T J, et al. Occurrence and toxicity of antibiotics in the aquatic environment: A review [J]. Chemosphere, 2020, 251: 126351. doi: 10.1016/j.chemosphere.2020.126351
[3] FELSEN C B, DODDS ASHLEY E S, BARNEY G R, et al. Reducing fluoroquinolone use and Clostridioides difficile infections in community nursing homes through hospital-nursing home collaboration [J]. Journal of the American Medical Directors Association, 2020, 21(1): 55-61. doi: 10.1016/j.jamda.2019.11.010
[4] DING G Y, CHEN G L, LIU Y D, et al. Occurrence and risk assessment of fluoroquinolone antibiotics in reclaimed water and receiving groundwater with different replenishment pathways [J]. Science of the Total Environment, 2020, 738: 139802. doi: 10.1016/j.scitotenv.2020.139802
[5] RICHARDS G A, BRINK A J, FELDMAN C. Rational use of the fluoroquinolones [J]. South African Medical Journal, 2019, 109(6): 378-381. doi: 10.7196/SAMJ.2019.v109i6.14002
[6] YANG W J, FULIDONG F, MA J W, et al. Research progress of antibiotic pollution and treatment technologies in China [J]. E3S Web of Conferences, 2020, 194: 04004. doi: 10.1051/e3sconf/202019404004
[7] TZENG T W, LIU Y T, DENG Y, et al. Removal of sulfamethazine antibiotics using cow manure-based carbon adsorbents [J]. International Journal of Environmental Science and Technology, 2016, 13(3): 973-984. doi: 10.1007/s13762-015-0929-4
[8] LUO J W, LI X, GE C J, et al. Sorption of norfloxacin, sulfamerazine and oxytetracycline by KOH-modified biochar under single and ternary systems [J]. Bioresource Technology, 2018, 263: 385-392. doi: 10.1016/j.biortech.2018.05.022
[9] ZHU Y W, MURALI S, CAI W W, et al. Graphene and graphene oxide: Synthesis, properties, and applications [J]. Advanced Materials, 2010, 22(35): 3906-3924. doi: 10.1002/adma.201001068
[10] EL-SHOBAKY G A, TURKY A M, MOSTAFA N Y, et al. Effect of preparation conditions on physicochemical, surface and catalytic properties of cobalt ferrite prepared by coprecipitation [J]. Journal of Alloys and Compounds, 2010, 493(1/2): 415-422.
[11] ATI A, OTHAMAN Z, SAMAVATI A. Influence of cobalt on structural and magnetic properties of nickel ferrite nanoparticles [J]. Journal of Molecular Structure, 2013, 1052: 177-182. doi: 10.1016/j.molstruc.2013.08.040
[12] 匡嘉敏. CoFe2O4/rGO复合纳米材料的制备及其性能研究[D]. 吉林: 东北电力大学, 2017. KUANG J M. Study on the preparation and properties of cobalt ferrite/reduced graphene oxide nanocomposites[D]. Jilin, China: Northeast Dianli University, 2017(in Chinese).
[13] MENG L Y, WANG B, MA M G, et al. The progress of microwave-assisted hydrothermal method in the synthesis of functional nanomaterials [J]. Materials Today Chemistry, 2016, 1/2: 63-83. doi: 10.1016/j.mtchem.2016.11.003
[14] RATHI A K, GAWANDE M B, ZBORIL R, et al. Microwave-assisted synthesis – Catalytic applications in aqueous media [J]. Coordination Chemistry Reviews, 2015, 291: 68-94. doi: 10.1016/j.ccr.2015.01.011
[15] 张志宾, 张昊岩, 邱燕芳, 等. 磷酸化石墨烯吸附铀的性能研究 [J]. 中国科学:化学, 2019, 49(1): 195-206. doi: 10.1360/N032018-00153 ZHANG Z B, ZHANG H Y, QIU Y F, et al. Adsorption of uranium by phosphorylated graphene oxide [J]. Scientia Sinica (Chimica), 2019, 49(1): 195-206(in Chinese). doi: 10.1360/N032018-00153
[16] LU X F, YANG L, BIAN X J, et al. Rapid, microwave-assisted, and one-pot synthesis of magnetic palladium-CoFe2O4 -graphene composite nanosheets and their applications as recyclable catalysts [J]. Particle & Particle Systems Characterization, 2014, 31(2): 245-251.
[17] 戴江栋. 多孔碳基材料的可控制备及其高效分离抗生素行为和机理研究[D]. 镇江: 江苏大学, 2016. DAI J D. Controlled preparation of porous carbon-based materials and study on behavior and mechanism of high-efficiency antibiotic separation[D]. Zhenjiang, China: Jiangsu University, 2016(in Chinese).
[18] BULUT E, OZACAR M, SENGIL I A. Equilibrium and kinetic data and process design for adsorption of Congo Red onto bentonite [J]. Journal of Hazardous Materials, 2008, 154(1/2/3): 613-622.
[19] CHOWDHURY S, SIKDER J, MANDAL T, et al. Comprehensive analysis on sorptive uptake of enrofloxacin by activated carbon derived from industrial paper sludge [J]. The Science of the Total Environment, 2019, 665: 438-452. doi: 10.1016/j.scitotenv.2019.02.081
[20] ZHAO J, LIANG G W, ZHANG X L, et al. Coating magnetic biochar with humic acid for high efficient removal of fluoroquinolone antibiotics in water [J]. The Science of the Total Environment, 2019, 688: 1205-1215. doi: 10.1016/j.scitotenv.2019.06.287
[21] TANG L, YU J F, PANG Y, et al. Sustainable efficient adsorbent: Alkali-acid modified magnetic biochar derived from sewage sludge for aqueous organic contaminant removal [J]. Chemical Engineering Journal, 2018, 336: 160-169. doi: 10.1016/j.cej.2017.11.048
[22] 周俊, 李燕, 管益东, 等. 杨木生物炭对水溶液中3种磺胺类抗生素的混合吸附 [J]. 环境工程, 2021, 39(3): 1-6,13. doi: 10.13205/j.hjgc.202103001 ZHOU J, LI Y, GUAN Y D, et al. Mixed sorption of three aqueous sulfonamides onto the biochar derived from poplar wood chips [J]. Environmental Engineering, 2021, 39(3): 1-6,13(in Chinese). doi: 10.13205/j.hjgc.202103001
[23] HUANG P, GE C J, FENG D, et al. Effects of metal ions and pH on ofloxacin sorption to cassava residue-derived biochar [J]. Science of the Total Environment, 2018, 616/617: 1384-1391. doi: 10.1016/j.scitotenv.2017.10.177
[24] AKSU Z, DÖNMEZ G. Binary biosorption of cadmium(II) and nickel(II) onto dried Chlorella vulgaris: Co-ion effect on mono-component isotherm parameters [J]. Process Biochemistry, 2006, 41(4): 860-868. doi: 10.1016/j.procbio.2005.10.025
[25] 王琦, 胡碧波, 阳春, 等. 烷基功能化磁性介孔硅的制备及其对氟喹诺酮类抗生素的吸附 [J]. 环境工程学报, 2020, 14(9): 2450-2462. doi: 10.12030/j.cjee.202001019 WANG Q, HU B B, YANG C, et al. Fabrication of alkyl-functionalized magnetic mesoporous silica and its adsorption of fluoroquinolone antibiotics [J]. Chinese Journal of Environmental Engineering, 2020, 14(9): 2450-2462(in Chinese). doi: 10.12030/j.cjee.202001019
[26] PENG X M, HU F P, ZHANG T, et al. Amine-functionalized magnetic bamboo-based activated carbon adsorptive removal of ciprofloxacin and norfloxacin: A batch and fixed-bed column study [J]. Bioresource Technology, 2018, 249: 924-934. doi: 10.1016/j.biortech.2017.10.095
[27] ZHAO J, WANG Z Y, WHITE J C, et al. Graphene in the aquatic environment: Adsorption, dispersion, toxicity and transformation [J]. Environmental Science & Technology, 2014, 48(17): 9995-10009.
[28] GU X Y, TAN Y Y, TONG F, et al. Surface complexation modeling of coadsorption of antibiotic ciprofloxacin and Cu(Ⅱ) and onto goethite surfaces [J]. Chemical Engineering Journal, 2015, 269: 113-120. doi: 10.1016/j.cej.2014.12.114
[29] PEI Z G, SHAN X Q, KONG J J, et al. Coadsorption of ciprofloxacin and Cu(II) on montmorillonite and kaolinite as affected by solution pH [J]. Environmental Science & Technology, 2010, 44(3): 915-920.
[30] LI X Z, BI E P. The impacts of Cu(II) complexation on gatifloxacin adsorption onto goethite and hematite [J]. Journal of Environmental Quality, 2020, 49(1): 50-60. doi: 10.1002/jeq2.20016
[31] HUANG D F, XU Y B, YU X Q, et al. Effect of cadmium on the sorption of tylosin by polystyrene microplastics [J]. Ecotoxicology and Environmental Safety, 2021, 207: 111255. doi: 10.1016/j.ecoenv.2020.111255
[32] MA J, XIONG Y C, DAI X H, et al. Coadsorption behavior and mechanism of ciprofloxacin and Cu(Ⅱ) on graphene hydrogel wetted surface [J]. Chemical Engineering Journal, 2020, 380: 122387. doi: 10.1016/j.cej.2019.122387
[33] ZHANG H C, HUANG C H. Adsorption and oxidation of fluoroquinolone antibacterial agents and structurally related amines with goethite [J]. Chemosphere, 2007, 66(8): 1502-1512. doi: 10.1016/j.chemosphere.2006.08.024
[34] 童非, 顾雪元. 重金属离子与典型离子型有机污染物的络合效应研究 [J]. 中国环境科学, 2014, 34(7): 1776-1784. TONG F, GU X Y. Study on complexation effect between heavy metal cations and typical ionic organic pollutants [J]. China Environmental Science, 2014, 34(7): 1776-1784(in Chinese).