[1] 国家发展和改革委员会, 自然环境部, 住房和城乡建设部, 等. 2020年中国生态环境状况公报 [EB/OL]. 中华人民共和国生态环境部, 2021.
[2] 董祎波, 吴慧芳, 张国庆, 等. 河湖底泥污染物及其原位修复技术的研究进展[J]. 广东水利水电, 2020, 12: 13-18. doi: 10.11905/j.issn.1008-0112.2020.03.003
[3] MORENO B, CANIZARES R, MACCI C, et al. Molecular tools to understand the bioremediation effect of plants and earthworms on contaminated marine sediments[J]. Journal of Hazardous Materials, 2015, 300: 398-405. doi: 10.1016/j.jhazmat.2015.07.019
[4] 雷沛, 张洪, 王超, 等. 沉积物水界面污染物迁移扩散的研究进展[J]. 湖泊科学, 2018, 30(6): 1489-1508. doi: 10.18307/2018.0602
[5] 孙健, 曾磊, 贺珊珊, 等. 国内城市黑臭水体内源污染治理技术研究进展[J]. 净水技术, 2020, 39(2): 77-80,97. doi: 10.15890/j.cnki.jsjs.2020.02.013
[6] 徐垚, 李大鹏, 韩菲尔, 等. CaO2不同投加方式对黑臭河道底泥内源磷释放抑制作用[J]. 环境科学, 2017, 38(7): 2836-2842.
[7] 孙远军, 李小平, 黄廷林, 等. 受污染沉积物原位修复技术研究进展[J]. 水处理技术, 2008, 189(1): 14-18. doi: 10.16796/j.cnki.1000-3770.2008.01.004
[8] 顾鹏飞. 城市黑臭河流的原位化学修复研究[D]. 青岛: 山东大学, 2018.
[9] YANG X, CHEN Z, WU Q, et al. Enhanced phenanthrene degradation in river sediments using a combination of biochar and nitrate[J]. Science of the Total Environment, 2018, 619: 600-605.
[10] YANG X, LI E, LIU F, et al. Interactions of PAH-degradation and nitrate-/sulfate-reducing assemblages in anaerobic sediment microbial community[J]. Journal of Hazardous Materials, 2020, 388: 122068. doi: 10.1016/j.jhazmat.2020.122068
[11] YANG X, HUANG S, WU Q, et al. Nitrate reduction coupled with microbial oxidation of sulfide in river sediment[J]. Journal of Soils & Sediments, 2012, 12(9): 1435-1444.
[12] XU M, ZHANG Q, XIA C, et al. Elevated nitrate enriches microbial functional genes for potential bioremediation of complexly contaminated sediments[J]. ISME Journal, 2015, 9(2): 532-532.
[13] 王霖, 种云霄, 余光伟, 等. 黑臭底泥硝酸钙原位氧化的温度影响及微生物群落结构全过程分析[J]. 农业环境科学学报, 2015, 34(6): 1187-1195. doi: 10.11654/jaes.2015.06.024
[14] 刘近, 邓代永, 孙国萍, 等. 硝酸盐对沉积物中有机物氧化减量及微生物群落结构的影响[J]. 环境科学, 2013, 34(7): 2847-2854. doi: 10.13227/j.hjkx.2013.07.054
[15] LI W, ZHANG S, ZHANG L, et al. In-situ remediation of sediment by calcium nitrate combined with composite microorganisms under low-Do regulation[J]. Science of the Total Environment, 2019, 697: 134109. doi: 10.1016/j.scitotenv.2019.134109
[16] 张慧妍. 原位注射硝酸钙修复污染底泥过程中无机氮的迁移与转化[D]. 哈尔滨: 哈尔滨工业大学, 2015.
[17] LIU T, YUAN J, DONG W, et al. Effects on inorganic nitrogen compounds release of contaminated sediment treatment with in situ calcium nitrate injection[J]. Environmental Science and Pollution Research, 2014, 22(2): 1250-1260.
[18] HE Z, HUANG R, Liang Y, et al. Index for nitrate dosage calculation on sediment odor control using nitrate dependent ferrous and sulfide oxidation interactions[J]. Journal of Environmental Management, 2018, 226: 289-297. doi: 10.1016/j.jenvman.2018.08.037
[19] YANG X, HUANG S, WU Q, et al. Diversity and vertical distributions of sediment bacteria in an urban river contaminated by nutrients and heavy metals[J]. Frontiers of Environmental Science & Engineering, 2013, 7(6): 851-859.
[20] LIU X, TAO Y, ZHOU K, et al. Effect of water quality improvement on the remediation of river sediment due to the addition of calcium nitrate[J]. Science of the Total Environment, 2016, 575: 887-894.
[21] ZHAN Y, WU X, LIN J, et al. Combined use of calcium nitrate addition and anion exchange resin capping to control sedimentary phosphorus release and its nitrate-nitrogen releasing risk[J]. Science of the Total Environment, 2019, 689: 203-214. doi: 10.1016/j.scitotenv.2019.06.406
[22] YIN H, YANG P, KONG M. Effects of nitrate dosing on the migration of reduced sulfur in black odorous river sediment and the influencing factors[J]. Chemical Engineering Journal, 2019, 371: 516-523. doi: 10.1016/j.cej.2019.04.095
[23] MAI Y, LIANG Y, CHENG M, et al. Coupling oxidation of acid volatile sulfide, ferrous iron, and ammonia nitrogen from black-odorous sediment via autotrophic denitrification-anammox by nitrate addition[J]. Science of the Total Environment, 2021, 790: 147972. doi: 10.1016/j.scitotenv.2021.147972
[24] WU Y, WEN Y, ZHOU J, et al. Phosphorus release from lake sediments: Effects of pH, temperature and dissolved oxygen[J]. KSCE Journal of Civil Engineering, 2014, 18(1): 323-329. doi: 10.1007/s12205-014-0192-0
[25] 朱广伟, 秦伯强, 高光, 等. 长江中下游浅水湖泊沉积物中磷的形态及其与水相磷的关系[J]. 环境科学学报, 2004, 24(3): 381-388. doi: 10.3321/j.issn:0253-2468.2004.03.003
[26] ZHOU J, ZHANG M, JI M, et al. Evaluation of heavy metals stability and phosphate mobility in the remediation of sediment by calcium nitrate[J]. Water Environment Research, 2020, 92(7): 1017-1026. doi: 10.1002/wer.1297
[27] YAMADA TM, SUEITT A, BERALDO D, et al. Calcium nitrate addition to control the internal load of phosphorus from sediments of a tropical eutrophic reservoir: Microcosm experiments[J]. Water Research, 2012, 46(19): 6463-6475. doi: 10.1016/j.watres.2012.09.018
[28] 罗桂林, 田林锋. 基于WQI法的宁夏湖泊藻类爆发过程水环境质量变化及溯源探究[J]. 环境化学, 2021, 40(7): 2073-2082. doi: 10.7524/j.issn.0254-6108.2020100301
[29] CHEN L, WANG L, LIU S, et al. Profiling of microbial community during in situ remediation of volatile sulfide compounds in river sediment with nitrate by high throughput sequencing[J]. International Biodeterioration & Biodegradation, 2013, 85: 429-437.
[30] ZHAN Y, WU X, LIN J. Combined use of calcium nitrate, zeolite, and anion exchange resin for controlling phosphorus and nitrogen release from sediment and for overcoming disadvantage of calcium nitrate addition technology[J]. Environmental Science and Pollution Research, 2020, 689(1): 203-214.
[31] 麦顺之, 黄家明, 吴群河, 等. 活性材料覆盖法原位修复HOCs污染沉积物的研究进展[J]. 环境科学与技术, 2019, 42(6): 224-230.