[1] |
CHEN R, HU B, LIU Y, et al. Beyond PM2.5: The role of ultrafine particles on adverse health effects of air pollution[J]. Biochimica Et Biophysica Acta-General Subjects, 2016, 1860(12): 2844-2855. doi: 10.1016/j.bbagen.2016.03.019
|
[2] |
SRIDHARAN S, KUMAR M, SINGH L, et al. Microplastics as an emerging source of particulate air pollution: A critical review[J]. Journal of Hazardous Materials, 2021, 418: 126245. doi: 10.1016/j.jhazmat.2021.126245
|
[3] |
GIODA A, BERINGUI K, JUSTO E P S, et al. A review on atmospheric analysis focusing on public health, environmental legislation and chemical characterization[J/OL]. (2021-06-22)[2022-05-01]. https://www.tandfonline.com/doi/full/10.1080/10408347.2021.1919985?scroll=top&needAccess=true, 2021.
|
[4] |
TSIOURI V, KAKOSIMOS K E, KUMAR P. Concentrations, sources and exposure risks associated with particulate matter in the Middle East Area: A review[J]. Air Quality Atmosphere and Health, 2015, 8(1): 67-80. doi: 10.1007/s11869-014-0277-4
|
[5] |
JIA J, BI C, GUO X, et al. Characteristics, identification, and potential risk of polycyclic aromatic hydrocarbons in road dusts and agricultural soils from industrial sites in Shanghai, China[J]. Environmental Science and Pollution Research, 2017, 24(1): 605-615. doi: 10.1007/s11356-016-7818-3
|
[6] |
SOWLAT M H, HASHEMINASSAB S, SIOUTAS C. Source apportionment of ambient particle number concentrations in central Los Angeles using positive matrix factorization (PMF)[J]. Atmospheric Chemistry and Physics, 2016, 16(8): 4849-4866. doi: 10.5194/acp-16-4849-2016
|
[7] |
ZHOU L, LIU G J, SHEN M C, et al. Characteristics of indoor dust in an industrial city: Comparison with outdoor dust and atmospheric particulates[J]. Chemosphere, 2021, 272: 129952. doi: 10.1016/j.chemosphere.2021.129952
|
[8] |
BASAGANA X, ESNAOLA M, RIVAS I, et al. Neurodevelopmental deceleration by urban fine particles from different emission sources: A longitudinal observational study[J]. Environmental Health Perspectives, 2016, 124(10): 1630-1636. doi: 10.1289/EHP209
|
[9] |
TIAN S L, PAN Y P, WANG Y S. Size-resolved source apportionment of particulate matter in urban Beijing during haze and non-haze episodes[J]. Atmospheric Chemistry and Physics, 2016, 16(1): 1-19. doi: 10.5194/acp-16-1-2016
|
[10] |
CHEN F, ZHANG X H, YU H X, et al. Characteristics, causes and potential source regions of PM2.5 pollution in winter in Shijiazhuang, China[J]. Journal of Ecology and Rural Environment, 2017, 33(11): 975-982.
|
[11] |
LU H Y, LIN S L, MWANGI J K, et al. Characteristics and source apportionment of atmospheric PM2.5 at a coastal city in Southern Taiwan[J]. Aerosol and Air Quality Research, 2016, 16(4): 1022-1034. doi: 10.4209/aaqr.2016.01.0008
|
[12] |
HAN L, SUN Z B, HE J, et al. Seasonal variation in health impacts associated with visibility in Beijing, China[J]. Science of the Total Environment, 2020, 730: 139149. doi: 10.1016/j.scitotenv.2020.139149
|
[13] |
JOO Y S, KIM J, LEE J, et al. Understanding the link between exposure to fine particulate matter and internalizing problem behaviors among children in South Korea: Indirect effects through maternal depression and child abuse[J]. Health & Place, 2021, 68: 102531.
|
[14] |
SHIVANI, GADI R. Oxidative potential of ambient fine particulate matter for ranking of emission sources: An insight for emissions reductions[J]. Air Quality Atmosphere and Health, 2021, 14(8): 1149-1153. doi: 10.1007/s11869-021-01005-x
|
[15] |
GRIVAS G, CHERISTANIDIS S, CHALOULAKOU A, et al. Elemental composition and source apportionment of fine and coarse particles at traffic and urban background locations in Athens, Greece[J]. Aerosol and Air Quality Research, 2018, 18(7): 1642-1659. doi: 10.4209/aaqr.2017.12.0567
|
[16] |
PADOAN E, AJMONE-MARSAN F, QUEROL X, et al. An empirical model to predict road dust emissions based on pavement and traffic characteristics[J]. Environmental Pollution, 2018, 237: 713-720. doi: 10.1016/j.envpol.2017.10.115
|
[17] |
HUA H, JIANG S Y, SHE H A, et al. High spatial-temporal resolution emission inventory of multi-type air pollutants for Wuxi city[J]. Journal of Cleaner Production, 2019, 229: 278-288. doi: 10.1016/j.jclepro.2019.05.011
|
[18] |
LI T K, DONG W, DAI Q L, et al. Application and validation of the fugitive dust source emission inventory compilation method in Xiong'an New Area, China[J]. Science of the Total Environment, 2021, 798: 149114. doi: 10.1016/j.scitotenv.2021.149114
|
[19] |
CUI M C, LU H Y, ETYEMEZIAN V, et al. Quantifying the emission potentials of fugitive dust sources in Nanjing, East China[J]. Atmospheric Environment, 2019, 207: 129-135. doi: 10.1016/j.atmosenv.2019.03.016
|
[20] |
LUNDBERG J, GUSTAFSSON M, JANHALL S, et al. Temporal variation of road dust load and its size distribution: A comparative study of a porous and a dense pavement[J]. Water Air and Soil Pollution, 2020, 231(12): 561. doi: 10.1007/s11270-020-04923-1
|
[21] |
国家环保总局. 防治城市扬尘污染技术规范: HJ/T 393-2007[S]. 北京: 中国环境科学出版社, 2007.
|
[22] |
潘研, 邢敏, 侯亚峰, 等. 基于积尘负荷的北京市典型城区道路扬尘排放特征研究[J]. 环境污染与防治, 2020, 42(8): 975-979. doi: 10.15985/j.cnki.1001-3865.2020.08.008
|
[23] |
张伟, 姬亚芹, 李树立, 等. 天津市春季典型道路积尘负荷分布特征[J]. 中国环境监测, 2018, 34(1): 54-59. doi: 10.19316/j.issn.1002-6002.2018.01.07
|
[24] |
崔华胜. “以克论净”量化考核指标 提升城市道路作业洁净水平: 以北京市实践为例[J]. 城市管理与科技, 2021, 22(2): 64-66.
|
[25] |
杨益, 姬亚芹, 高玉宗, 等. 锦州市道路扬尘碳组分特征及来源分析[J]. 南开大学学报(自然科学版), 2022, 55(1): 107-112.
|
[26] |
刘俊芳, 樊守彬, 郭秀锐, 等. 基于车载移动监测的北京市丰台区道路扬尘源排放特征[J]. 环境科学学报, 2021, 41(11): 4423-4429.
|
[27] |
崔浩然, 樊守彬, 韩力慧, 等. 北京市密云区道路扬尘排放特征及融雪剂使用的影响[J]. 环境污染与防治, 2021, 43(8): 1016-1021.
|
[28] |
崔浩然, 樊守彬, 韩力慧, 等. 北京市大兴区道路积尘年际变化特征及管控研究[J]. 中国环境科学, 2021, 41(10): 4556-4564. doi: 10.3969/j.issn.1000-6923.2021.10.010
|
[29] |
北京交通发展研究院. 2019年北京交通发展年报[EB/OL]. (2019-06-01)[2022-05-01]. 20220603_101305vM9. pdf, 2019.
|
[30] |
门头沟区人民代表大会常务委员会. 北京市市容环境卫生条例[EB/OL]. (2020-06-01)[2022-05-01]. 3e9c56d52a2c49afabf104d767069dfe. pdf (bjmtg. gov. cn), 2020.
|
[31] |
刘娟. 石家庄市道路交通扬尘检测及排放量核查核算研究[D]. 石家庄: 河北科技大学, 2016.
|
[32] |
樊守彬, 田刚, 李钢, 等. 北京铺装道路交通扬尘排放规律研究[J]. 环境科学, 2007, 28(10): 2396-2399. doi: 10.3321/j.issn:0250-3301.2007.10.041
|
[33] |
曹巍. 济南市区道路积尘负荷的测定及控制措施[J]. 环境卫生工程, 2011, 19(4): 24-27. doi: 10.3969/j.issn.1005-8206.2011.04.009
|
[34] |
中华人民共和国生态环境部. 中国移动源环境管理年报 (2019年) [EB/OL]. (2019-09-04) [2022-05-01]. P020190905586230826402. pdf (mee. gov. cn), 2019.
|
[35] |
郭硕, 肖捷颖, 安塞, 等. 利用快速检测法研究石家庄道路交通扬尘排放特征[J]. 环境污染与防治, 2019, 41(2): 206-210. doi: 10.15985/j.cnki.1001-3865.2019.02.016
|
[36] |
王娟, 洪雯. 乌鲁木齐市道路积尘负荷影响因子分析与探讨[J]. 科技创新导报, 2016, 13(18): 49-51.
|
[37] |
张诗建. 基于快速检测法的天津市道路扬尘排放清单研究[D]. 天津: 南开大学, 2016.
|
[38] |
杨乃旺, 宋文斌, 闫东杰, 等. 基于积尘负荷的西安市铺装道路扬尘排放研究[J]. 环境科学学报, 2021, 41(4): 1259-1266.
|
[39] |
樊守彬, 张东旭, 田灵娣, 等. 北京市交通扬尘PM2.5排放清单及空间分布特征[J]. 环境科学研究, 2016, 29(1): 20-28.
|
[40] |
WANG J H, DENG Y, SONG C, et al. Measuring time accessibility and its spatial characteristics in the urban areas of Beijing[J]. Journal of Geographical Sciences, 2016, 26(12): 1754-1768. doi: 10.1007/s11442-016-1356-2
|
[41] |
胡月琪, 李萌, 颜旭, 等. 北京市典型道路扬尘化学组分特征及年际变化[J]. 环境科学, 2019, 40(4): 1645-1655. doi: 10.13227/j.hjkx.201808224
|
[42] |
赵静琦, 姬亚芹, 张蕾, 等. 基于样方法的天津市春季道路扬尘PM2.5中水溶性离子特征及来源解析[J]. 环境科学, 2018, 39(5): 1994-1999.
|
[43] |
中华人民共和国住房和城乡建设部. 城市道路清扫保洁质量与评价标准: CJJ/T 126-2008[S]. 北京: 中国标准出版社, 2008.
|