[1] |
王苏民, 窦鸿身. 中国湖泊志[M]. 北京: 科学出版社, 1998.
|
[2] |
MINEEVA N M, KORNEVA L G, SOLOVYOVA V V. Influence of environemntal factors on phytoplankton photosynthetic activity in the Volga River reservoirs[J]. Inland Water Biology, 2016, 9(3): 258 − 267. doi: 10.1134/S1995082916030160
|
[3] |
SABITOVA R Z, MUKHORTOVA O V, PODDUBNAYA N Y, et al. Zooplankton of Lake Kandrykul (Republic of Bashkortostan, Russia) under conditions of anthropogenic eutrophication[J]. Inland Water Biology, 2018, 11(2): 153 − 160. doi: 10.1134/S1995082918010145
|
[4] |
KORNEVA L G. Changes in phytoplankton diversity in the Volga Basin waterbodies[J]. Inland Water Biology, 2010, 3(4): 322 − 328. doi: 10.1134/S1995082910040048
|
[5] |
BABANAZAROVA O V, SIDELEV S I, ZHDANOVA S M, et al. Water level in a shallow highly eutrophic lake: Development factor by macrophyte or phytoplankton type: Case study of Lake Nero, Yaroslavl Oblast[J]. Water Resources, 2018, 45(6): 897 − 907. doi: 10.1134/S0097807818060027
|
[6] |
GU X Y, LIAO Z L, ZHANG G Q, et al. Modelling the effects of water diversion and combined sewer overflow on urban inland river quality[J]. Environmental Science and Pollution Research, 2017, 24(26): 21038 − 21049. doi: 10.1007/s11356-017-9686-x
|
[7] |
YANG J, YANG Y, CHEN R S, et al. Modeling and evaluating spatial variation of polycyclic aromatic hydrocarbons in urban lake surface sediments in Shanghai[J]. Environmental Pollution, 2018, 235(12): 1 − 10.
|
[8] |
YANG H, ZHAO Y, WANG J H, et al. Urban closed lakes: Nutrient sources, assimilative capacity and pollutant reduction under different precipitation frequencies[J]. Science of the Total Environment, 2020, 700: 134531. doi: 10.1016/j.scitotenv.2019.134531
|
[9] |
CHEN S N, HE H Y, ZONG R R, et al. Geographical patterns of algal communities associated with different urban lakes in China[J]. International Journal of Environmental Research and Public Health, 2020, 17(3): 1009. doi: 10.3390/ijerph17031009
|
[10] |
RYBAK M, JONIAK T, GABKA M, et al. The inhibition of growth and oospores production in Chara hi spida L. as an effect of iron sulphate addition: Conclusions for the use of iron coagulants in lake restoration[J]. Ecological Engineering, 2017, 105(4): 1 − 6.
|
[11] |
SUN F, LIU Y. China's ministry of environmental protection adopted draft amendment to the law on prevention and control of water pollution[J]. Frontiers of Environmental Science & Engineering, 2016, 10(6): 17.
|
[12] |
GLICK B R. Phytoremediation: Synergistic use of plants and bacteria to clean up the environment[J]. Biotechnology Advances, 2003, 21(5): 383 − 393. doi: 10.1016/S0734-9750(03)00055-7
|
[13] |
BU F P, XU X Y. Planted floating bed performance in treatment of eutrophic river water[J]. Environmental Monitoring & Assessment, 2013, 185(11): 9651 − 9662.
|
[14] |
JEF H, CODD G A, PAERL H W, et al. Cyanobacterial blooms[J]. Nature Reviews Microbiology, 2018, 16(4): 471 − 483.
|
[15] |
章宗涉, 黄祥飞. 淡水浮游生物研究方法[M]. 北京: 科学出版社, 1991.
|
[16] |
SCHREIBER U, ENDO T, MI H, et al. Quenching analysis of chlorophyll fluorescence by the saturation pulse method: Particular aspects relating to the study of eukaryotic algae and cyanobacteria[J]. Plant & Cell Physiology, 1995, 36(5): 873 − 882.
|
[17] |
MA Z, FANG T, THRING R W, et al. Toxic and non-toxic strains of microcystis aeruginosa induce temperature dependent allelopathy toward growth and photosynthesis of chlorella vulgaris[J]. Harmful Algae, 2015, 48(7): 21 − 29.
|
[18] |
孙玉平, 于恒国, 周钦, 等. 典型富营养化城市河流: 浙江温瑞塘河的浮游植物群落类型与季节变化[J]. 湖泊科学, 2018, 30(2): 375 − 384. doi: 10.18307/2018.0209
|
[19] |
徐兆礼, 陈亚瞿. 东黄海秋季浮游动物优势种聚集强度与鲐鲹渔场的关系[J]. 生态学杂志, 1989, 8(4): 13 − 15.
|
[20] |
XIE J, CHEN X, QIN X U, et al. Study on water quality response for urban lake ecological restoration[J]. Journal of Water Resources and Water Engineering, 2019, 30(1): 53 − 59.
|
[21] |
俞海桥, 方涛, 夏世斌. 疏浚及水生植被重建对太湖西五里湖表层沉积物中磷、氮含量及形态分布的影响[J]. 农业环境科学学报, 2007, 26(3): 868 − 872. doi: 10.3321/j.issn:1672-2043.2007.03.012
|
[22] |
王朴, 梁玉婷, 康凯丽. 湿生植物对富营养化水体修复研究[J]. 安徽农业科学, 2021, 49(12): 8 − 12. doi: 10.3969/j.issn.0517-6611.2021.12.003
|
[23] |
靳萍, 徐婷婷, 杨佩昀, 等. 磷浓度对小环藻、大型溞和金鱼藻三者相互作用的影响[J]. 水生生物学报, 2016, 40(1): 103 − 108. doi: 10.7541/2016.15
|
[24] |
秦洁, 吴献花, 王泉, 等. 抚仙湖浮游植物群落结构特征及多样性研究[J]. 水生态学杂志, 2016, 37(5): 15 − 22.
|
[25] |
DEMBOWSKA E A. The use of phytoplankton in the assessment of water quality in the lower section of Poland's largest river[J]. Water, 2021, 13(23): 3471 − 3471. doi: 10.3390/w13233471
|
[26] |
GOBLER C J, DAVIS T W, COYNE K J, et al. Interactive influences of nutrient loading, zooplankton grazing, and microcystin synthetase gene expression on cyanobacterial bloom dynamics in a eutrophic New York lake[J]. Harmful Algae, 2007, 6(1): 119 − 33. doi: 10.1016/j.hal.2006.08.003
|
[27] |
郑灿, 段杰仁, 石伟, 等. 星海湖浮游植物群落结构及与水环境因子的关系[J]. 水产学杂志, 2020, 33(1): 46 − 52. doi: 10.3969/j.issn.1005-3832.2020.01.008
|
[28] |
WIRTZ K, SMITH S L. Vertical migration by bulk phytoplankton sustains biodiversity and nutrient input to the surface ocean[J]. Scientific Reports, 2021, 11(1): 9486 − 9486. doi: 10.1038/s41598-021-88994-y
|
[29] |
CHAI X L, WU B R, XU Z S, et al. Ecosystem activation system (EAS) technology for remediation of eutrophic freshwater[J]. Scientific Reports, 2020, 7(1): 4818 − 4818.
|
[30] |
RICHARDSON K, BENDTSEN J. Vertical distribution of phytoplankton and primary production in relation to nutricline depth in the open ocean[J]. Marine Ecology Progress Series, 2019, 620: 33 − 46. doi: 10.3354/meps12960
|
[31] |
LÜRLING M, ESHETU F, FAASSEN E J, et al. Comparison of cyanobacterial and green algal growth rates at different temperatures[J]. Freshwater Biology, 2013, 58(3): 552 − 559. doi: 10.1111/j.1365-2427.2012.02866.x
|
[32] |
CLASKA M E, GILBERT J J. The effect of temperature on the response of daphnia to toxic cyanobacteria[J]. Freshwater Biology, 1998, 39(2): 221 − 232. doi: 10.1046/j.1365-2427.1998.00276.x
|
[33] |
邓建明, 蔡永久, 陈宇炜, 等. 洪湖浮游植物群落结构及其与环境因子的关系[J]. 湖泊科学, 2010, 22(1): 70 − 78.
|
[34] |
TRAGIN M, VAULOT D. Green microalgae in marine coastal waters: The Ocean Sampling Day (OSD) dataset[J]. Scientific Reports, 2018, 8(1): 14020. doi: 10.1038/s41598-018-32338-w
|
[35] |
ZHANG Y, LIU X, QIN B, et al. Aquatic vegetation in response to increased eutrophication and degraded light climate in Eastern Lake Taihu: Implications for lake ecological restoration[J]. Scientific Reports, 2016, 6(1): 23867 − 23867. doi: 10.1038/srep23867
|
[36] |
YANG H, WANG J, LI J, et al. Modelling impacts of water diversion on water quality in an urban artificial lake[J]. Environmental Pollution, 2021, 276(2): 116694.
|
[37] |
MA Z, YU H, THRING R, et al. Interaction between simulated dense Scenedesmus dimorphus (Chlorophyta) bloom and freshwater meta-zooplankton community[J]. Journal of Limnology, 2018, 77(2): 255 − 265.
|
[38] |
DEJEN E, VIJVERBERG J, NAGELKERKE L, et al. Temporal and spatial distribution of microcrustacean zooplankton in relation to turbidity and other environmental factors in a large tropical lake (L. Tana, Ethiopia)[J]. Hydrobiologia, 2004, 513(1): 39 − 49. doi: 10.1023/B:hydr.0000018163.60503.b8
|
[39] |
陈光荣, 等. 广东省城市湖泊后生浮游动物群落的影响因子分析[C]//中国环境科学学会. 第十三届世界湖泊大会论文集[A]. 武汉, 2009: 1057-1062.
|
[40] |
王晓辉, 望甜, 林秋奇, 等. 华南地区典型抽水型水库后生浮游动物群落的种类组成与结构[J]. 生态学报, 2009, 29(1): 456 − 465. doi: 10.3321/j.issn:1000-0933.2009.01.054
|
[41] |
SONG C U, CHOI H, JEON M S, et al. Zooplankton diversity monitoring strategy for the urban coastal region using metabarcoding analysis[J]. Scientific Reports, 2021, 11(1): 24339. doi: 10.1038/s41598-021-03656-3
|
[42] |
晏军, 张玉平, 孙振中, 等. 鱼、虾和蟹塘浮游甲壳动物群落结构分析与讨论[J]. 水产科技情报, 2015, 42(4): 169 − 174.
|
[43] |
董旭峰. 枝角类净化猪场废水的可行性及其资源化利用研究[D]. 上海: 上海海洋大学, 2014.
|
[44] |
吴利, 冯伟松, 张堂林, 等. 湖北省西凉湖浮游动物群落周年动态变化及其与环境因子的关系[J]. 湖泊科学, 2011, 23(4): 619 − 625. doi: 10.18307/2011.0419
|
[45] |
许浩, 白承荣, 蔡舰, 等. 城市重污染河道治理不同阶段中浮游动物群落的变化[J]. 环境污染与防治, 2018, 40(11): 1271 − 1278.
|