[1] 钟为章, 冯卫博, 许彬, 等. 抗生素菌渣中活性物质的提取及应用现状[J]. 科学技术与工程, 2021, 21(33): 14049-14055. doi: 10.3969/j.issn.1671-1815.2021.33.003
[2] 陈黎, 孔祥生, 刘秋新, 等. 抗生素菌渣生物炭的制备及特性[J]. 环境科学与技术, 2019, 42(6): 128-133.
[3] YANG G, WANG J, SHEN Y. Antibiotic fermentation residue for biohydrogen production using different pretreated cultures: Performance evaluation and microbial community analysis[J]. Bioresource Technology, 2019, 292: 122012. doi: 10.1016/j.biortech.2019.122012
[4] CAI C, HUA Y, LI H, et al. Hydrothermal treatment of erythromycin fermentation residue: Harmless performance and bioresource properties[J]. Resources, Conservation and Recycling, 2020, 161: 104952. doi: 10.1016/j.resconrec.2020.104952
[5] 陈冠益, 刘环博, 李健, 等. 抗生素菌渣处理技术研究进展[J]. 环境化学, 2021, 40(2): 459-473. doi: 10.7524/j.issn.0254-6108.2020061302
[6] 生态环境部, 国家发展和改革委员会, 公安部, 交通运输部, 国家卫生健康委员会. 国家危险废物名录(2021年版)[EB/OL]. [2020-11-25]. https://www.mee.gov.cn/xxgk2018/xxgk/xxgk02/202011/t20201127_810202.html.
[7] 孔祥娟, 魏亮亮, 姜珺秋, 等. 有机固废厌氧产沼气产业发展现状及政策需求[J]. 中国给水排水, 2013, 29(20): 26-29.
[8] ALVAREZ J A, OTERO L, LEMA J M, et al. The effect and fate of antibiotics during the anaerobic digestion of pig manure[J]. Bioresource Technology, 2010, 101(22): 8581-8586. doi: 10.1016/j.biortech.2010.06.075
[9] SUI Q, MENG X, WANG R, et al. Effects of endogenous inhibitors on the evolution of antibiotic resistance genes during high solid anaerobic digestion of swine manure[J]. Bioresource Technology, 2018, 270: 328-336. doi: 10.1016/j.biortech.2018.09.043
[10] 宋云鹏, 刘吉宝, 陈梅雪, 等. 餐厨垃圾干式厌氧消化工艺中甲烷转化率及其限制性因素[J]. 环境工程学报, 2021, 15(5): 1697-1707. doi: 10.12030/j.cjee.202101031
[11] PELLERA F M, GIDARAKOS E. Effect of substrate to inoculum ratio and inoculum type on the biochemical methane potential of solid agro-industrial waste[J]. Journal of Environmental Chemical Engineering, 2016, 4(3): 3217-3229. doi: 10.1016/j.jece.2016.05.026
[12] 陈欣, 涂德浴, 隋倩雯, 等. 固体浓度对猪粪厌氧消化甲烷产出特性的影响[J]. 中国农业气象, 2014, 35(2): 149-155. doi: 10.3969/j.issn.1000-6362.2014.02.005
[13] ARELLI V, MAMINDLAPELLI N K, BEGUM S, et al. Solid state anaerobic digestion of food waste and sewage sludge: Impact of mixing ratios and temperature on microbial diversity, reactor stability and methane yield[J]. Science of the Total Environment, 2021, 793: 148586. doi: 10.1016/j.scitotenv.2021.148586
[14] 邹书娟, 王一迪, 张均雅, 等. 抗生素菌渣理化性质分析[J]. 环境科学与技术, 2018, 41(S1): 47-52.
[15] 宁高阳. 土霉素菌渣的减量化及菌渣溶液的生物处理研究[D]. 兰州: 兰州交通大学, 2020.
[16] 徐文倩, 董红敏, 斌尚, 等. 典型畜禽粪便厌氧发酵产甲烷潜力试验与计算[J]. 农业工程学报, 2021, 37(14): 228-234. doi: 10.11975/j.issn.1002-6819.2021.14.026
[17] 杨祎楠, 强虹, 裴梦富, 等. 进料浓度对鸡粪连续中温厌氧消化的影响[J]. 环境工程学报, 2019, 13(12): 2963-2972. doi: 10.12030/j.cjee.201902117
[18] 刘中军, 丁岳峰, 于钦, 等. 不同粒径玉米秸秆与猪粪混合厌氧发酵特性研究[J]. 可再生能源, 2020, 38(10): 1301-1306. doi: 10.3969/j.issn.1671-5292.2020.10.004
[19] 王乐乐, 郑讯涛, 张寓涵, 等. 总固体浓度对猪粪厌氧消化的影响及菌群结构分析[J]. 江苏农业科学, 2019, 47(5): 244-248.
[20] MICOLUCCI F, GOTTARDO M, CAVINATO C, et al. Mesophilic and thermophilic anaerobic digestion of the liquid fraction of pressed biowaste for high energy yields recovery[J]. Waste Management, 2016, 48: 227-235. doi: 10.1016/j.wasman.2015.09.031
[21] 孟晓山. 高含固率猪粪污厌氧消化特征及其氨氮抑制的研究[D]. 徐州: 中国矿业大学, 2019.
[22] XU Y, LU Y, ZHENG L, et al. Perspective on enhancing the anaerobic digestion of waste activated sludge[J]. Journal of Hazardous Materials, 2020, 389: 121847. doi: 10.1016/j.jhazmat.2019.121847
[23] 徐颂, 吴铎, 吕凡, 等. 含固率和接种比对林可霉素菌渣厌氧消化的影响[J]. 中国环境科学, 2010, 30(3): 362-368.
[24] JIANG Y, MCADAM E, ZHANG Y, et al. Ammonia inhibition and toxicity in anaerobic digestion: A critical review[J]. Journal of Water Process Engineering, 2019, 32: 100899. doi: 10.1016/j.jwpe.2019.100899
[25] 詹瑜. 高含固剩余污泥厌氧消化过程中氮素转化规律研究[D]. 无锡: 江南大学, 2018.
[26] 孟晓山, 张玉秀, 隋倩雯, 等. 氨氮浓度对猪粪厌氧消化及产甲烷菌群结构的影响[J]. 环境工程学报, 2018, 12(8): 2346-2356. doi: 10.12030/j.cjee.201802064
[27] 周富春. 基于VS的有机固体废物厌氧消化的趋势分析[J]. 环境科学与技术, 2009, 32(6): 121-122. doi: 10.3969/j.issn.1003-6504.2009.06.027
[28] 张涛. 高压均质/碱预处理-强化厌氧处理土霉素菌渣试验研究[D]. 石家庄: 河北科技大学, 2018.
[29] 高妍. 基于厌氧消化的青霉素菌渣无害化处理技术研究[D]. 石家庄: 河北科技大学, 2015.
[30] 朱晓磊, 田在锋, 王路光, 等. 土霉素对厌氧生物处理的抑制作用研究[J]. 中国给水排水, 2010, 26(1): 93-95.
[31] 马清佳, 田哲, 员建, 等. 9种抗生素对污泥高温厌氧消化的急性抑制[J]. 环境工程学报, 2018, 12(7): 2084-2093. doi: 10.12030/j.cjee.201712098
[32] 朱晓磊. 厌氧处理中抗生素残留抑制因子的控制研究[D]. 保定: 河北大学, 2009.
[33] SHI J C, LIAO X D, WU Y B, et al. Effect of antibiotics on methane arising from anaerobic digestion of pig manure[J]. Animal Feed Science and Technology, 2011, 166-167: 457-463. doi: 10.1016/j.anifeedsci.2011.04.033
[34] 唐涛涛, 李江, 杨钊, 等. 污泥厌氧消化功能微生物群落结构的研究进展[J]. 化工进展, 2020, 39(1): 320-328.
[35] NELSON M C, MORRISON M, YU Z T. A meta-analysis of the microbial diversity observed in anaerobic digesters[J]. Bioresource Technology, 2011, 102(4): 3730-3739. doi: 10.1016/j.biortech.2010.11.119
[36] RIVIERE D, DESVIGNES V, PELLETIER E, et al. Towards the definition of a core of microorganisms involved in anaerobic digestion of sludge[J]. The ISME Journal, 2009, 3(6): 700-714. doi: 10.1038/ismej.2009.2
[37] YI J, DONG B, JIN J W, et al. Effect of increasing total solids contents on anaerobic digestion of food waste under mesophilic conditions: performance and microbial characteristics analysis[J]. PLOS One, 2014, 9(7): 1025-1029.
[38] VRIEZE J D, HENNEBEL T, BOON N, et al. Methanosarcina: the rediscovered methanogen for heavy duty biomethanation[J]. Bioresource Technology, 2012, 112(5): 1-9.
[39] SCHATTAUER A, ABDOUN E, WEILAND P, et al. Abundance of trace elements in demonstration biogas plants[J]. Biosystems Engineering, 2011, 108(1): 57-65. doi: 10.1016/j.biosystemseng.2010.10.010