[1] AGUILAR-ALARCÓN P, GONZALEZ S V, SIMONSEN M A, et al. Characterizing changes of dissolved organic matter composition with the use of distinct feeds in recirculating aquaculture systems via high-resolution mass spectrometry[J]. Science of the Total Environment, 2020, 749: 142326. doi: 10.1016/j.scitotenv.2020.142326
[2] BESSON M, AUBIN J, KOMEN H, et al. Environmental impacts of genetic improvement of growth rate and feed conversion ratio in fish farming under rearing density and nitrogen output limitations[J]. Journal of Cleaner Production, 2016, 116: 100-109. doi: 10.1016/j.jclepro.2015.12.084
[3] BADIOLA M, MENDIOLA D, BOSTOCK J, et al. Aquacultural engineering recirculating aquaculture systems (RAS) analysis: Main issues on management and future challenges[J]. Aquacultural Engineering, 2012, 51: 26-35. doi: 10.1016/j.aquaeng.2012.07.004
[4] MARTINS C I M, EDING E H, VERDEGEM M C J, et al. New developments in recirculating aquaculture systems in Europe: a perspective on environmental sustainability[J]. Aquacultural Engineering, 2010, 43(3): 83-93. doi: 10.1016/j.aquaeng.2010.09.002
[5] VAN R J. Waste treatment in recirculating aquaculture systems[J]. Aquacultural Engineering, 2013, 53: 49-56.
[6] 冯国禄, 罗金飞, 廖永岩, 等. 不同盐度循环养殖水体微生物群落特征[J]. 环境科学研究, 2020, 33(8): 1838-1847. doi: 10.13198/j.issn.1001-6929.2020.02.11
[7] YOKOYAMA H, ABO K, ISHIHI Y. Quantifying aquaculture-derived organic matter in the sediment in and around a coastal fish farm using stable carbon and nitrogen isotope ratios[J]. Aquaculture, 2006, 254: 411-425. doi: 10.1016/j.aquaculture.2005.10.024
[8] WANG J F, CHEN J G, YU P P, et al. Oxygenation and synchronous control of nitrogen and phosphorus release at the sediment-water interface using oxygen nano-bubble modified material[J]. Science of The Total Environment, 2020: 725. doi: 10.1016/j.scitotenv.2020.138258
[9] 代政, 祁艳丽, 唐永杰, 等. 上覆水环境因子对滨海水库沉积物氮磷释放的影响[J]. 环境科学研究, 2016, 29(12): 1766-1772. doi: 10.13198/j.issn.1001-6929.2016.12.05
[10] BEUTEL M W, LEONARD T M, DENT S R, et al. Effects of aerobic and anaerobic conditions on P, N, Fe, Mn, and Hg accumulation in waters overlaying profundal sediments of an oligo-mesotrophic lake[J]. Water Research, 2008, 42: 1953-1962. doi: 10.1016/j.watres.2007.11.027
[11] KANG M X, PENG S, TIAN Y M, et al. Effects of dissolved oxygen and nutrient loading on phosphorus fluxes at the sediment-water interface in the Hai River Estuary, China[J]. Marine Pollution Bulletin, 2018, 130: 132-139. doi: 10.1016/j.marpolbul.2018.03.029
[12] YANG P, ZHAO G H, TONG C, et al. Assessing nutrient budgets and environmental impacts of coastal land-based aquaculture system in southeastern China[J]. Agriculture, Ecosystems& Environment, 2021: 322. doi: 10.1016/j.agee.2021.107662
[13] BORGES P A F, TRAIN S, DIAS J D, et al. Effects of fish farming on plankton structure in a Braziliantropical reservoir[J]. Hydrobiologia, 2010, 649(1): 279-291. doi: 10.1007/s10750-010-0271-2
[14] ZHU D T, CHENG X J, SAMPLE D J, et al. Effect of intermittent aeration mode on nitrogen concentration in the water column and sediment pore water of aquaculture ponds[J]. Journal of Environmental Sciences, 2020, 90: 331-342. doi: 10.1016/j.jes.2019.11.022
[15] 熊仕娟, 徐卫红, 杨芸, 等. 不同温度下微生物和纤维素酶对发酵猪粪理化特性的影响[J]. 环境科学学报, 2014, 34(12): 3158-3165. doi: 10.13671/j.hjkxxb.2014.0668
[16] 鲁如坤. 土壤农业化学分析方法[J]. 北京. 中国农业科技出版社, 2000: 108.
[17] XU N, TAN C, WANG H Y, et al. Effect of biochar additions to soil on nitrogen leaching, microbial biomass and bacterial community structure[J]. European Journal of Soil Biology, 2016, 74: 1-8. doi: 10.1016/j.ejsobi.2016.02.004
[18] CHEN S F, ZHOU Y Q, CHEN Y R, et al. fastp: an ultra-fast all-in-one FASTQ preprocessor[J]. Bioinformatics, 2018, 34(17): 884-890. doi: 10.1093/bioinformatics/bty560
[19] MAGOČ T, SALZBERG S L. FLASH: fast length adjustment of short reads to improve genome assemblies[J]. Bioinformatics, 2011, 27(21): 2957-2963. doi: 10.1093/bioinformatics/btr507
[20] EDGAR R C. UPARSE: highly accurate OTU sequences from microbial amplicon reads[J]. Nature Methods, 2013, 10(10): 996-998. doi: 10.1038/nmeth.2604
[21] WANG Q, GARRITY G M, TIEGJE J M, et al. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy[J]. Applied Environment Microbiology, 2007, 73(16): 5261‐5267.
[22] 梅晓洁, 唐建国, 张悦. 城镇污水处理厂污泥稳定化处理产物转化机理及可利用价值揭示[J]. 给水排水, 2018, 54(11): 11-19. doi: 10.3969/j.issn.1002-8471.2018.11.002
[23] 尚丽霞, 柯凡, 李文朝, 等. 高密度蓝藻厌氧分解过程与污染物释放实验研究[J]. 湖泊科学, 2013, 25(1): 47-54. doi: 10.3969/j.issn.1003-5427.2013.01.007
[24] 谌建宇, 许振成, 骆其金, 等. 曝气复氧对滇池重污染支流底泥污染物迁移转化的影响[J]. 生态环境, 2008, 17(6): 2154-2158.
[25] 王美丽, 刘 春, 何连生, 等. 曝气深度对河道底泥特性及水质的影响[J]. 环境工程学报, 2016, 10(6): 2909-2914. doi: 10.12030/j.cjee.201501034
[26] ZHANG L, WANG S R, WU Z H. Coupling effect of pH and dissolved oxygen in water column on nitrogen release at watere-sediment interface of Erhai Lake, China[J]. Estuarine, Coastal and Shelf Science, 2014, 149: 178-186. doi: 10.1016/j.ecss.2014.08.009
[27] TIAN X P, ZHAO J T, HUANG J, et al. The metabolic process of aerobic granular sludge treating piggery wastewater: Microbial community, denitrification genes and mathematical model calculation[J]. Journal of Environmental Chemical Engineering, 2021: 9. doi: 10.1016/j.jece.2021.105392
[28] BAO Y, HUANG T, NING C W, et al. Changes of DOM and its correlation with internal nutrient release during cyanobacterial growth and decline in Lake Chaohu, China[J]. Journal of Environmental Sciences, 2023, 124: 769-781. doi: 10.1016/j.jes.2022.02.019
[29] 林绍霞, 肖致强, 张转铃, 等. 贵州草海水体溶解性有机物的荧光光谱特征及来源解析[J]. 中国环境科学, 2021, 41(3): 1325-1335. doi: 10.3969/j.issn.1000-6923.2021.03.036
[30] ZHAO L Y, LI N, HUANG T L, et al. Effects of artificially induced complete mixing on dissolved organic matter in a stratified source water reservoir[J]. Journal of Environmental Sciences, 2022, 111: 130-140. doi: 10.1016/j.jes.2021.03.024
[31] HOU L F, ZHOU Q, WU Q P, et al. Spatiotemporal changes in bacterial community and microbial activity in a full-scale drinking water treatment plant[J]. Science of the Total Environment, 2018, 625: 449-459. doi: 10.1016/j.scitotenv.2017.12.301
[32] SINGH B, MINICK K J, STRICKLAND M S, et al. Temporal and spatial impact of human cadaver decomposition on soil bacterial and arthropod community structure and function[J]. Frontiers in Microbiology, 2018: 8. doi: 10.3389/fmicb.2017.02616
[33] CHEN J F, LIU Y Y, LIU K, et al. Bacterial community composition of internal circulation reactor at different heights for large-scale brewery wastewater treatment[J]. Bioresource Technology, 2021: 331. doi: 10.1016/j.biortech.2021.125027
[34] ZHOU R, WANG Y J, HILAL M G, et al. Temporal succession of water microbiomes and resistomes during carcass decomposition in a fish model[J]. Journal of Hazardous Materials, 2021: 403. doi: 10.1016/j.jhazmat.2020.123795
[35] MELVILLE C M, SCOTT K P, MERCER D K, et al. Novel tetracycline resistance gene, tet(32), in the Clostridium-related human colonic anaerobe K10 and its transmission in vitro to the rumen anaerobe Butyrivibrio fibrisolvens[J]. Antimicrobial Agents and Chemotherapy, 2001, 45(11): 3246-3249. doi: 10.1128/AAC.45.11.3246-3249.2001
[36] WEISS S, CARTER D O, METCALF J L, et al. Carcass mass has little influence on the structure of grave soil microbial communities[J]. International Journal of Legal Medicine, 2016, 130(1): 253-263. doi: 10.1007/s00414-015-1206-2
[37] TRAVING S J, ROWE O, JAKOBSEN N M, et al. The effect of increased loads of dissolved organic matter on estuarine microbial community composition and function[J]. Frontiers in Microbiology, 2017: 8. doi: 10.3389/fmicb.2017.00351
[38] WANG H J, LIU X C, WANG Y L, et al. Spatial and temporal dynamics of microbial community composition and factors influencing the surface water and sediments of urban rivers[J]. Journal of Environmental Sciences, 2022, 124: 187-197.