[1] |
CHEN Z Y, ZHANG W, WANG G, et al. Bioavailability of soil-sorbed tetracycline to Escherichia coliunder unsaturated conditions[J] Environmental Science & Technology, 2017, 51 (11): 6165–6173.
|
[2] |
LIU J L, ZHOU B Q, ZHANG H, et al. A novel Biochar modified by Chitosan-Fe/S for tetracycline adsorption and studies on site energy distribution[J]. Bioresource Technology, 2019, 294: 122152. doi: 10.1016/j.biortech.2019.122152
|
[3] |
YU F, LI Y, HAN, S, et al. Adsorptive removal of antibiotics from aqueous solution using carbon materials[J]. Chemosphere, 2016, 153: 365-385. doi: 10.1016/j.chemosphere.2016.03.083
|
[4] |
CHEN Y, WANG F, DUAN L, et al. Tetracycline adsorption onto rice husk ash, an agricultural waste: Its kinetic and thermodynamic studies[J]. Journal of Molecular Liquids, 2016, 222: 487-494. doi: 10.1016/j.molliq.2016.07.090
|
[5] |
XU L Y, ZHANG H, XIONG P, et al. Occurrence, fate, and risk assessment of typical tetracycline antibiotics in the aquatic environment: A review[J]. Science of the Total Environment, 2020, 753: 141975.
|
[6] |
ZHANG Z L, LI Y, DING L, et al. Novel sodium bicarbonate activation of cassava ethanol sludge derived biochar for removing tetracycline from aqueous solution: Performance assessment and mechanism insight[J]. Bioresource Technology, 2021, 330(5): 124949.
|
[7] |
马锋锋, 赵保卫, 钟金魁, 等. 牛粪生物炭对磷的吸附特性及其影响因素研究[J]. 中国环境科学, 2015, 35(4): 1156-1163.
|
[8] |
姜晶, 黄晓月, 白金龙, 等. 高锰酸钾改性生物炭对水中噻虫胺吸附性能及机理[J]. 环境工程学报, 2022,16(4):1175-1185.
|
[9] |
LUO X W, SHEN M X, LIU J H, et al. Resource utilization of piggery sludge to prepare recyclable magnetic biochar for highly efficient degradation of tetracycline through peroxymonosulfate activation[J]. Journal of Cleaner Production, 2021, 294: 126372. doi: 10.1016/j.jclepro.2021.126372
|
[10] |
WANG H L, CAO X D, RINKLEBE J. Biochar effects on environmental qualities inmultiple directions[J]. Chemosphere, 2020, 250: 126306. doi: 10.1016/j.chemosphere.2020.126306
|
[11] |
WANG Z Y, HAN L F, SUN K, et al. Sorption of four hydrophobic organic contaminants by biochars derived from maize straw, wood dust and swine manure at different pyrolytic temperatures[J]. Chemosphere, 2016, 144: 285-291. doi: 10.1016/j.chemosphere.2015.08.042
|
[12] |
CHEN T W, LING L, DENG S H, et al. Sorption of tetracycline on H3PO4 modified biochar derived from rice straw and swine manure[J]. Bioresource Technology, 2018, 267: 431-437. doi: 10.1016/j.biortech.2018.07.074
|
[13] |
HUANG T, SU Z Y, DAI Y X, et al. Enhancement of the heterogeneous adsorption and incorporation of uraniumVI caused by the intercalation of β-cyclodextrin into the green rust[J]. Environmental Pollution, 2021, 290: 118002. doi: 10.1016/j.envpol.2021.118002
|
[14] |
ZHAO H T, MA S, ZHENG S Y, et al. β–cyclodextrin functionalized biochars as novel sorbents for high-performance of Pb2+ removal[J]. Journal of Hazardous Materials, 2019, 362(15): 206-213.
|
[15] |
LIU J, ZHOU J, WU Z H, et al. Concurrent elimination and stepwise recovery of Pb(II) and bisphenol A from water using β–cyclodextrin modified magnetic cellulose: adsorption performance and mechanism investigation[J]. Journal of Hazardous Materials, 2022, 432: 128758. doi: 10.1016/j.jhazmat.2022.128758
|
[16] |
桂向阳, 刘晨, 许吉宏, 等. 畜禽粪便生物炭的二维红外光谱分析[J]. 光谱学与光谱分析, 2020, 40(11): 292-298.
|
[17] |
马锋锋, 赵保卫, 刁静茹, 等. 磁性生物炭对水体中对硝基苯酚的吸附特性[J]. 中国环境科学, 2019, 39(1): 172-180. doi: 10.3969/j.issn.1000-6923.2019.01.019
|
[18] |
CHEN Y C, LIU J T, ZENG Q B, et al. Preparation of Eucommia ulmoides lignin-based high-performance biochar containing sulfonic group: Synergistic pyrolysis mechanism and tetracycline hydrochloride adsorption[J]. Bioresource Technology, 2021, 329: 124856. doi: 10.1016/j.biortech.2021.124856
|
[19] |
LI B, ZHANG Y, XU J, et al. Effect of carbonization methods on the properties of tea waste biochars and their application in tetracycline removal from aqueous solutions[J]. Chemosphere, 2021, 267(12): 129283.
|
[20] |
HAMEED B H, TAN I, AHMAD A L. Adsorption isotherm, kinetic modeling and mechanism of 2, 4, 6-trichlorophenol on coconut husk-based activated carbon[J]. Chemical Engineering Journal, 2008, 144(2): 235-244. doi: 10.1016/j.cej.2008.01.028
|
[21] |
JANG H M, KAN E. Engineered biochar from agricultural waste for removal of tetracycline in water[J]. Bioresource Technology, 2019, 284: 437-447. doi: 10.1016/j.biortech.2019.03.131
|
[22] |
YU H X, GU L, CHEN L, et al. Activation of grapefruit derived biochar by its peel extracts and its performance for tetracycline removal[J]. Bioresource Technology, 2020, 316: 123971. doi: 10.1016/j.biortech.2020.123971
|
[23] |
CHATHURI P, SAMEERA R. G, TODD E. M, et al. Biochar based removal of antibiotic sulfonamides and tetracyclines in aquatic environments: A critical review.[J]. Bioresource Technology, 2017, 246: 150-159. doi: 10.1016/j.biortech.2017.07.150
|
[24] |
ZENG Z, YE S, WU H, et al. Research on the sustainable efficacy of g -MoS2 decorated biochar nanocomposites for removing tetracycline hydrochloride from antibiotic-polluted aqueous solution[J]. Science of the Total Environment, 2018, 648: 206-217.
|
[25] |
HOSLETT J, GHAZAL H, KATSOU E, et al. The removal of tetracycline from water using biochar produced from agricultural discarded material[J]. Science of the Total Environment, 2021, 751: 141755. doi: 10.1016/j.scitotenv.2020.141755
|
[26] |
JI L L, CHEN W, DUAN L, et al. Mechanisms for strong adsorption of tetracycline to carbon nanotubes: a comparative study using activated carbon and graphite as adsorbents[J]. Environmental Science & Technology, 2009, 43(7): 2322-2327.
|
[27] |
Geng X X, Lv S Y, Yang J, et al. Carboxyl-functionalized biochar derived from walnut shells with enhanced aqueous adsorption of sulfonamide antibiotics[J]. Journal of Environmental Management, 2021, 280: 111749. doi: 10.1016/j.jenvman.2020.111749
|