[1] The Danish Ecological Council and Danish Consumer. The Nanodatabase[EB/OL]. [2022-2-1].https://www.nanodb.dk/, 2013.
[2] GOTTSCHALK F, T SONDERER, R W SCHOLZ, et al. Modeled environmental concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, Fullerenes) for different regions[J]. Environmental Science & Technology, 2009, 43(24): 9216-22.
[3] YAZDANBAKHSH A R, RAFIEE M, DARAEI H, et al. Responses of flocculated activated sludge to bimetallic Ag-Fe nanoparticles toxicity: Performance, activity enzymatic, and bacterial community shift[J]. Journal of Hazardous Materials, 2019, 366: 114-123. doi: 10.1016/j.jhazmat.2018.11.098
[4] RASOOL K and LEE D S. Inhibitory effects of silver nanoparticles on removal of organic pollutants and sulfate in an anaerobic biological wastewater treatment process[J]. Journal of Nanoscience and Nanotechnology, 2016, 16(5): 4456-4463. doi: 10.1166/jnn.2016.10984
[5] FORSTNER C, ORTON T G, WANG P, et al. Wastewater treatment processing of silver nanoparticles strongly influences their effects on soil microbial diversity[J]. Environmental Science and Technology, 2020, 54(21): 13538-13547. doi: 10.1021/acs.est.0c01312
[6] FERNANDO I, LU D, and ZHOU Y. Interactive influence of extracellular polymeric substances (EPS) and electrolytes on the colloidal stability of silver nanoparticles[J]. Environmental Science-Nano, 2020, 7(1): 186-197. doi: 10.1039/C9EN00861F
[7] VILELA P, LIU H B, LEE S, et al. A systematic approach of removal mechanisms, control and optimization of silver nanoparticle in wastewater treatment plants[J]. Science of the Total Environment, 2018, 633: 989-998. doi: 10.1016/j.scitotenv.2018.03.247
[8] LEVARD C, MITRA S, YANG T, et al. Effect of chloride on the dissolution rate of silver nanoparticles and toxicity to E. coli[J]. Environmental Science & Technology, 2013, 47(11): 5738-5745.
[9] BRUNETTI G, DONNER E, LAERA G, et al. Fate of zinc and silver engineered nanoparticles in sewerage networks[J]. Water Research, 2015, 77: 72-84. doi: 10.1016/j.watres.2015.03.003
[10] ZHANG C, HU Z, DENG B. Silver nanoparticles in aquatic environments: physiochemical behavior and antimicrobial mechanisms[J]. Water Research, 2016, 88: 403-427. doi: 10.1016/j.watres.2015.10.025
[11] CHEN W P, SONG J H, JIANG S J, et al. Influence of extracellular polymeric substances from activated sludge on the aggregation kinetics of silver and silver sulfide nanoparticles[J]. Frontiers of Environmental Science & Engineering, 2021, 16(2).
[12] REINSCH B C, LEVARD C, LI Z, et al. Sulfidation of silver nanoparticles decreases escherichia coli growth inhibition[J]. Environmental Science & Technology, 2012, 46(13): 6992-7000.
[13] LEVARD C, REINSCH B C, MICHEL F M, et al. Sulfidation processes of pvp-coated silver nanoparticles in aqueous solution: Impact on dissolution rate[J]. Environmental Science & Technology, 2011, 45(12): 5260-5266.
[14] XIU Z, MA J, Alvarez P J J, Differential effect of common ligands and molecular oxygen on antimicrobial activity of silver nanoparticles versus silver ions[J]. Environmental Science & Technology, 2011, 45(20): 9003-9008.
[15] KIM B, PARK C S, MURAYAMA M, et al. Discovery and characterization of silver sulfide nanoparticles in final sewage sludge products[J]. Environmental Science & Technology, 2010, 44(19): 7509-7514.
[16] CHOI O, DENG K K, KIM N J, et al. The inhibitory effects of silver nanoparticles, silver ions, and silver chloride colloids on microbial growth[J]. Water Research, 2008, 42(12): 3066-3074. doi: 10.1016/j.watres.2008.02.021
[17] TKACHENKO O, KARAS J A, Standardizing an in vitro procedure for the evaluation of the antimicrobial activity of wound dressings and the assessment of three wound dressings[J]. Journal of Antimicrobial Chemotherapy, 2012, 67(7): 1697-1700.
[18] MCGILLICUDDY E. , MURRAY I., KAVANAGH S., et al. Silver nanoparticles in the environment: Sources, detection and ecotoxicology[J]. Science of the Total Environment, 2017, 575: 231-246. doi: 10.1016/j.scitotenv.2016.10.041
[19] HAO Z N, F S LI, R LIU, et al. Reduction of ionic silver by sulfur dioxide as a source of silver nanoparticles in the environment[J]. Environmental Science & Technology, 2021, 55(8): 5569-5578.
[20] ALIZADEH, S, RAHIM, AA, GUO, B, et al. Impacts of continuous inflow of low concentrations of silver nanoparticles on biological performance and microbial communities of aerobic heterotrophic wastewater biofilm[J]. Environmental Science & Technology, 2019, 53(15): 9148-9159.
[21] CHEN Y G, H CHEN, X ZHENG, et al. The impacts of silver nanoparticles and silver ions on wastewater biological phosphorous removal and the mechanisms[J]. Journal of Hazardous Materials, 2012, 239: 88-94.
[22] WANG F, Z CHEN, Y WANG, et al. Silver nanoparticles induce apoptosis in HepG2 cells through particle-specific effects on mitochondria[J]. Environmental science & technology, 2022, 56(9): 5706-5713.
[23] MO F, H B LI, Y H LI, et al. Exploration of defense and tolerance mechanisms in dominant species of mining area - Trifolium pratense L. upon exposure to silver[J]. Science of the Total Environment, 2022: 811.
[24] GAO Y F, W R WU, K X QIAO, et al. Bioavailability and toxicity of silver nanoparticles: Determination based on toxicokinetic-toxicodynamic processes[J]. Water Research, 2021: 204.
[25] ALITO C L and GUNSCH C K. Assessing the effects of silver nanoparticles on biological nutrient removal in bench-scale activated sludge sequencing batch reactors[J]. Environmental Science & Technology, 2014, 48(2): 970-976.
[26] RAINIER H, LATIFI M A, ROCHEL N. Optimal design and operation of activated sludge processes: State-of-the-art[J]. Chemical Engineering Journal, 2015, 281: 900-920. doi: 10.1016/j.cej.2015.06.125
[27] TANG S H and ZHENG J. Antibacterial activity of silver nanoparticles: Structural effects[J]. Advanced Healthcare Materials, 2018, 7(13).
[28] XU Q Y, LI S S, WAN Y P, et al. Impacts of silver nanoparticles on performance and microbial community and enzymatic activity of a sequencing batch reactor[J]. Journal of Environmental Management, 2017, 204: 667-673. doi: 10.1016/j.jenvman.2017.09.050
[29] ZHOU H X and XU G R. Effect of silver nanoparticles on an integrated fixed-film activated sludge-sequencing batch reactor: Performance and community structure[J]. Journal of Environmental Sciences, 2019, 80: 229-239. doi: 10.1016/j.jes.2018.12.016
[30] 段颖, 孙秀玥, 盛涛, 等 纳米银和银离子对活性污泥系统污染物去除效率的影响[J]. 环境工程学报, 2021, 15(7): 2450-2459.
[31] JEMEC A, KAHRU A, POTTHOFF A, et al. An interlaboratory comparison of nanosilver characterisation and hazard identification: Harmonising techniques for high quality data[J]. Environment International, 2016, 87: 20-32. doi: 10.1016/j.envint.2015.10.014
[32] 国家环境保护总局. 水和废水监测分析方法(第四版)[M]. 北京: 中国环境科学出版社. 2002.
[33] YUAN D Q, WANG Y L, and QIAN X. Variations of internal structure and moisture distribution in activated sludge with stratified extracellular polymeric substances extraction[J]. International Biodeterioration & Biodegradation, 2017, 116: 1-9.
[34] MCGRATH S P and CUNLIFFE C H. A simplified method for the extraction of the metals Fe, Zn, Cu, Ni, Cd, Pb, Cr, Co and Mn from soils and sewage sludges[J]. Journal of the Science of Food and Agriculture, 1985, 36(9): 794-798. doi: 10.1002/jsfa.2740360906
[35] 李墨青. 纳米银对SBR系统水处理效能及微生物菌群的影响研究[D]. 哈尔滨: 哈尔滨工业大学, 2014.
[36] NING Y F, CHEN Y P, SHEN Y, et al. A new approach for estimating aerobic-anaerobic biofilm structure in wastewater treatment via dissolved oxygen microdistribution[J]. Chemical Engineering Journal, 2014, 255: 171-177. doi: 10.1016/j.cej.2014.06.042
[37] ZHANG P, FANG F, CHEN Y P, et al. Composition of EPS fractions from suspended sludge and biofilm and their roles in microbial cell aggregation[J]. Chemosphere, 2014, 117: 59-65. doi: 10.1016/j.chemosphere.2014.05.070
[38] SHENG Z Y, VAN NOSTRAND J D, ZHOU J Z, et al. Contradictory effects of silver nanoparticles on activated sludge wastewater treatment[J]. Journal of Hazardous Materials, 2018, 341: 448-456. doi: 10.1016/j.jhazmat.2017.07.051
[39] SUN J, GUO L, LI Q, et al. Structural and functional properties of organic matters in extracellular polymeric substances (EPS) and dissolved organic matters (DOM) after heat pretreatment with waste sludge[J]. Bioresource Technology, 2016, 219: 614-623. doi: 10.1016/j.biortech.2016.08.042
[40] HONG P-N, HONDA R, NOGUCHI M, et al. Optimum selection of extraction methods of extracellular polymeric substances in activated sludge for effective extraction of the target components[J]. Biochemical Engineering Journal, 2017, 127: 136-146. doi: 10.1016/j.bej.2017.08.002
[41] LI Z, LU P, ZHANG D, et al. Population balance modeling of activated sludge flocculation: Investigating the influence of Extracellular Polymeric Substances (EPS) content and zeta potential on flocculation dynamics[J]. Separation and Purification Technology, 2016, 162: 91-100. doi: 10.1016/j.seppur.2016.02.011
[42] DONG B, LIU G, ZHOU J, et al. Transformation of silver ions to silver nanoparticles mediated by humic acid under dark conditions at ambient temperature[J]. Journal of Hazardous Materials, 2020, 383: 121190. doi: 10.1016/j.jhazmat.2019.121190
[43] LIU J and HURT R H. Ion release kinetics and particle persistence in aqueous nano-silver colloids[J]. Environmental Science & Technology, 2010, 44(6): 2169-2175.
[44] CHOI O K and HU Z Q. Nitrification inhibition by silver nanoparticles[J]. Water Science and Technology, 2009, 59(9): 1699-1702. doi: 10.2166/wst.2009.205
[45] HOU L, LI K, DING Y, et al. Removal of silver nanoparticles in simulated wastewater treatment processes and its impact on COD and NH(4) reduction[J]. Chemosphere, 2012, 87(3): 248-52. doi: 10.1016/j.chemosphere.2011.12.042
[46] YUAN Z H, YANG X Y, HU A Y, et al. Assessment of the fate of silver nanoparticles in the A(2)O-MBR system[J]. Science of the Total Environment, 2016, 544: 901-907. doi: 10.1016/j.scitotenv.2015.11.158
[47] SUN X, SHENG Z, and LIU Y. Effects of silver nanoparticles on microbial community structure in activated sludge[J]. Science of the Total Environment, 2013, 443: 828-35. doi: 10.1016/j.scitotenv.2012.11.019
[48] BURKHARDT M, ZULEEG S, KAEGI R, et al. Fate of nanosilver in wastewater treatment plants and their impact on nitrification activity in sewage sludge[J]. Umweltwissenschaften und Schadstoff-Forschung, 2010, 22(5): 529-540. doi: 10.1007/s12302-010-0153-2
[49] 李金璞, 唐珠, 杨新萍. 纳米银对SBRs脱氮效率的影响及外源AHLs的调控作用[J]. 环境工程学报, 2021, 15(9): 2942-2951. doi: 10.12030/j.cjee.202104088
[50] 李金璞. 群体感应AHLs信号分子对活性污泥污水处理系统抵抗纳米银胁迫的作用[D]. 南京: 南京农业大学, 2020.
[51] GORHAM J M, ROHLFING A B, LIPPA K A, et al. Storage wars: how citrate-capped silver nanoparticle suspensions are affected by not-so-trivial decisions[J]. Journal of Nanoparticle Research, 2014, 16(4): 2339. doi: 10.1007/s11051-014-2339-9
[52] KAEGI R, VOEGELIN A, SINNET B, et al. Behavior of metallic silver nanoparticles in a pilot wastewater treatment plant[J]. Environmental Science & Technology, 2011, 45(9): 3902-8.
[53] LIU J F, CHAO J B, LIU R, et al. Cloud point extraction as an advantageous preconcentration approach for analysis of trace silver nanoparticles in environmental waters[J]. Analytical Chemistry, 2009, 81(15): 6496-6502. doi: 10.1021/ac900918e
[54] CHEN L R, FENG W R, FAN J, et al. Removal of silver nanoparticles in aqueous solution by activated sludge: Mechanism and characteristics[J]. Science of the Total Environment, 2020: 711.
[55] NIST X-ray Photoelectron Spectroscopy. National Institute of Standards and Technology(Version 4.1 )[EB/OL]. [2021-08-01]. http://srdata.nist.gov/xps/, 2012.
[56] ZHANG W, YAO Y, LI K G, et al. Influence of dissolved oxygen on aggregation kinetics of citrate-coated silver nanoparticles[J]. Environmental Pollution, 2011, 159(12): 3757-3762. doi: 10.1016/j.envpol.2011.07.013
[57] CHOI O and HU Z Q. Size dependent and reactive oxygen species related nanosilver toxicity to nitrifying bacteria[J]. Environmental Science & Technology, 2008, 42(12): 4583-4588.
[58] EGOROVA E M. Interaction of silver nanoparticles with biological objects: Antimicrobial properties and toxicity for the other living organisms[J]. Journal of Physics:Conference Series, 2011: 291.
[59] BASTOS V, FERREIRA-DE-OLIVEIRA J M P, CARROLA J, et al. Coating independent cytotoxicity of citrate- and PEG-coated silver nanoparticles on a human hepatoma cell line[J]. Journal of Environmental Sciences, 2017, 51: 191-201. doi: 10.1016/j.jes.2016.05.028
[60] JOHNSON A C, JURGENS M D, LAWLOR A J, et al. Particulate and colloidal silver in sewage effluent and sludge discharged from British wastewater treatment plants[J]. Chemosphere, 2014, 112: 49-55. doi: 10.1016/j.chemosphere.2014.03.039
[61] QIU G L, WIRIANTO K, SUN Y L, et al. Effect of silver nanoparticles on system performance and microbial community dynamics in a sequencing batch reactor[J]. Journal of Cleaner Production, 2016, 130: 137-142. doi: 10.1016/j.jclepro.2015.10.051
[62] SHEN W N, FENG L J, FENG H, et al. Ultrafine silver(II) oxide particles decorated porous ceramic composites for water treatment[J]. Chemical Engineering Journal, 2011, 175: 592-599. doi: 10.1016/j.cej.2011.09.121
[63] BAO S, LIANG L, HUANG J, et al. Removal and fate of silver nanoparticles in lab-scale vertical flow constructed wetland[J]. Chemosphere, 2019, 214: 203-209. doi: 10.1016/j.chemosphere.2018.09.110
[64] LI L, XU Z, WIMMER A, et al. New insights into the stability of silver sulfide nanoparticles in surface water: dissolution through hypochlorite oxidation[J]. Environmental Science & Technology, 2017, 51(14): 7920-7927.
[65] 陈冠益, 韩克旋, 刘彩霞, 等. 污泥中重金属处理方法[J]. 化学进展, 2021, 33(6): 998-1009.