[1] 彭秋桐, 李中强, 邓绪伟, 等. 城市湖泊氮磷沉降输入量及影响因子——以武汉东湖为例[J]. 环境科学学报, 2019, 39(8): 2635 − 2643. doi: 10.13671/j.hjkxxb.2019.0191
[2] CHENG H H, NARINDIR B, CHU H, et al. Recent advancement on biological technologies and strategies for resource recovery from swine wastewater[J]. Bioresource Technology, 2020, 303: 122861. doi: 10.1016/j.biortech.2020.122861
[3] TAYLOR D I, OVIATT C A, GIBLIN A E, et al. Wastewater input reductions reverse historic hypereutrophication of Boston Harbor, USA[J]. Ambio, 2020, 49(1): 187 − 196. doi: 10.1007/s13280-019-01174-1
[4] BRODA E. Two kinds of lithotrophs missing in nature[J]. Zeitschrift fur Allgemeine Mikrobiologie, 1977, 17(6): 491 − 493. doi: 10.1002/jobm.19770170611
[5] MULDER A,VAN DE GRAAF A A , ROBERTSON L A, et al. Anaerobic ammonium oxidation discovered in a denitrifying fluidized bed reactor[J]. FEMS Microbiology Ecology, 1995, 16(3): 177 − 183. doi: 10.1111/j.1574-6941.1995.tb00281.x
[6] WEN D, VALENCIA A, ORDONEZ D, et al. Comparative nitrogen removal via microbial ecology between soil and green sorption media in a rapid infiltration basin for co-disposal of stormwater and wastewater[J]. Environmental Research, 2020, 184: 109338. doi: 10.1016/j.envres.2020.109338
[7] DOSTA J, FERNANDEZ I, VAZQUEZ P J R, et al. Short-and long-term effects of temperature on the Anammox process[J]. Journal of Hazardous Materials, 2008, 154(1-3): 688 − 693. doi: 10.1016/j.jhazmat.2007.10.082
[8] 姚俊芹, 刘志辉, 周少奇. 温度变化对厌氧氨氧化反应的影响[J]. 环境工程学报, 2013, 7(10): 3993 − 3996.
[9] 洪义国, 李猛, 顾继东. 海洋氮循环中细菌的厌氧氨氧化[J]. 微生物学报, 2009, 49(3): 281 − 286. doi: 10.3321/j.issn:0001-6209.2009.03.001
[10] STROUS M, KUENEN J G, JETTEN M S. Key physiology of anaerobic ammonium oxidation[J]. Applied and Environmental Microbiology, 1999, 65(7): 3248 − 3250. doi: 10.1128/AEM.65.7.3248-3250.1999
[11] DAMSTE J S S, STROUS M, RIJPSTRA W I C, et al. Linearly concatenated cyclobutane lipids form a dense bacterial membrane[J]. Nature, 2002, 419(6908): 708 − 712. doi: 10.1038/nature01128
[12] GRAAF A A V D, BRUIJN P D, ROBERTSON L A, et al. Metabolic pathway of anaerobic ammonium oxidation on the basis of 15N studies in a fluidized bed reactor[J]. Microbiology, 1997, 143(7): 2415 − 2421. doi: 10.1099/00221287-143-7-2415
[13] BORAN K, WOUTER J M, NAOMI M A, et al. Molecular mechanism of anaerobic ammonium oxidation[J]. Nature, 2011, 479(7371): 127 − U159. doi: 10.1038/nature10453
[14] KARTAL B, RATTRAY J, NIFTRIK L, et al. Candidatus “Anammoxoglobus propionicus” a new propionate oxidizing species of anaerobic ammonium oxidizing bacteria[J]. Systematic and Applied Microbiology, 2007, 30(1): 39 − 49. doi: 10.1016/j.syapm.2006.03.004
[15] BANDEIRA D A R G, DINIZ D S C E, LUDERS T C, et al. Nitrogen removal by simultaneous partial nitrification, anammox and denitrification (SNAD) in a structured-bed reactor treating animal feed processing wastewater: Inhibitory effects and bacterial community[J]. International Biodeterioration & Biodegradation, 2018, 133: 108 − 115.
[16] STROUS M, FUERST J A, KRAMER E H, et al. Missing lithotroph identified as new planctomycete[J]. Nature, 1999, 400(6743): 446 − 449. doi: 10.1038/22749
[17] BORAN K, LAURA V N, Jayne R, et al. Candidatus ‘Brocadia fulgida’: an autofluorescent anaerobic ammonium oxidizing bacterium[J]. FEMS Microbiology Ecology, 2008, 63(1): 46 − 55. doi: 10.1111/j.1574-6941.2007.00408.x
[18] OSHIKI M, SHIMOKAWA M, FUJII N, et al. Physiological characteristics of the anaerobic ammonium-oxidizing bacterium "Candidatus Brocadia sinica"[J]. Microbiology, 2011, 157(6): 1706 − 1713. doi: 10.1099/mic.0.048595-0
[19] HU B-L, RUSH D, VAN D B E, et al. New Anaerobic, Ammonium-Oxidizing Community Enriched from Peat Soil[J]. Applied and Environmental Microbiology, 2011, 77(3): 966 − 971. doi: 10.1128/AEM.02402-10
[20] STROUS M, PELLETIER E, MANGENOT S, et al. Deciphering the evolution and metabolism of an anammox bacterium from a community genome[J], Nature, 2006, 440(7085): 790-794.
[21] SCHMID M, WALSH K, WEBB R, et al. Candidatus "Scalindua brodae", sp. nov., Candidatus "Scalindua wagneri", sp. nov., two new species of anaerobic ammonium oxidizing bacteria[J]. Systematic and applied microbiology, 2003, 26(4): 529 − 538. doi: 10.1078/072320203770865837
[22] WOEBKEN D, LAM P, MARCEL M M K, et al. A microdiversity study of anammox bacteria reveals a novel Candidatus Scalindua phylotype in marine oxygen minimum zones[J]. Environmental Microbiology, 2008, 10(11): 3106 − 3119. doi: 10.1111/j.1462-2920.2008.01640.x
[23] STROUS M, HEIJNEN J J, KUENEN J G, et al. The sequencing batch reactor as a powerful tool for the study of slowly growing anaerobic ammonium-oxidizing microorganisms[J]. Applied Microbiology and Biotechnology, 1998, 50(5): 589 − 596. doi: 10.1007/s002530051340
[24] CAO Y, LOOSDRECHT M, DAIGGER G. Mainstream partial nitritation-anammox in municipal wastewater treatment: status, bottlenecks, and further studies[J]. Applied Microbiology & Biotechnology, 2017, 101(4): 1365 − 1383.
[25] XU X X, MA B, LU W K, et al. Effective nitrogen removal in a granule-based partial-denitrification/anammox reactor treating low C/N sewage[J]. Bioresource Technology, 2020, 297: 122467. doi: 10.1016/j.biortech.2019.122467
[26] 黄方玉, 邓良伟, 杨红男, 等. 温度对自养型同步脱氮工艺处理猪场废水厌氧消化液性能及微生物群落的影响[J]. 环境科学, 2019, 40(5): 2357 − 2367.
[27] LI R W, LI L, ZHANG Z M, et al. Speciation and conversion of carbon and nitrogen in young landfill leachate during anaerobic biological pretreatment[J]. Waste Management, 2020, 106: 88 − 98. doi: 10.1016/j.wasman.2020.03.011
[28] VAN D U, JETTEN M S M, VAN L M C M. The SHARON((R))-Anammox((R)) process for treatment of ammonium rich wastewater[J]. Water Science & Technology, 2001, 44(1): 153 − 160.
[29] GUO Q, XING B S, LI P, et al. Anaerobic ammonium oxidation (anammox) under realistic seasonal temperature variations: Characteristics of biogranules and process performance[J]. Bioresour Technology, 2015, 192: 765 − 773. doi: 10.1016/j.biortech.2015.06.049
[30] DU R, CAO S B, WANG S Y, et al. Performance of partial denitrification (PD)-ANAMMOX process in simultaneously treating nitrate and low C/N domestic wastewater at low temperature[J]. Bioresour Technology, 2016, 219: 420 − 429. doi: 10.1016/j.biortech.2016.07.101
[31] HU Z, LOTTI T, DE K M, et al. Nitrogen removal by a nitritation-anammox bioreactor at low temperature[J]. Applied and Environmental Microbiology, 2013, 79(8): 2807 − 2812. doi: 10.1128/AEM.03987-12
[32] KAWAGOSHI Y, FUJISAKI K, TOMOSHIGE Y, et al. Temperature effect on nitrogen removal performance and bacterial community in culture of marine anammox bacteria derived from sea-based waste disposal site[J]. Journal of Bioscience & Bioengineering, 2012, 113(4): 515 − 520.
[33] NAKAJIMA J, SAKKA M, KIMURA T, et al. Enrichment of anammox bacteria from marine environment for the construction of a bioremediation reactor[J]. Applied Microbiology and Biotechnology, 2008, 77(5): 1159 − 1166. doi: 10.1007/s00253-007-1247-7
[34] RYSGAARD S, GLUD R N, RISGAARD-PETERSEN N, et al. Denitrification and anammox activity in Arctic marine sediments[J]. Limnology and Oceanography, 2004, 49(5): 1493 − 1502. doi: 10.4319/lo.2004.49.5.1493
[35] GILBERT E M, AGRAWAL S, KARST S R M, et al. Low temperature partial nitritation/anammox in a moving bed biofilm reactor treating low strength wastewater[J]. Environmental Science & Technology, 2014, 48(15): 8784 − 8792.
[36] TSUSHIMA I, OGASAWARA Y, KINDAICHI T, et al. Development of high-rate anaerobic ammonium-oxidizing (anammox) biofilm reactors[J]. Water Research, 2007, 41(8): 1623 − 1634. doi: 10.1016/j.watres.2007.01.050
[37] ALI M, OSHIKI M, AWATA T, et al. Physiological characterization of anaerobic ammonium oxidizing bacterium "CandidatusJettenia caeni'[J]. Environmental Microbiology, 2015, 17(6): 2172 − 2189. doi: 10.1111/1462-2920.12674
[38] SCHMID M, SCHMITZ E S, JETTEN M, et al. 16S-23S rDNA intergenic spacer and 23S rDNA of anaerobic ammonium-oxidizing bacteria: implications for phylogeny and in situ detection[J]. Environmental Microbiology, 2001, 3(7): 450 − 459. doi: 10.1046/j.1462-2920.2001.00211.x
[39] VAN N L, GEERTS W J C, VAN D E G, et al. Linking ultrastructure and function in four genera of anaerobic ammonium-oxidizing bacteria: Cell plan, glycogen storage, and localization of cytochrome c proteins[J]. Journal of Bacteriology, 2008, 190(2): 708 − 717. doi: 10.1128/JB.01449-07
[40] KHRAMENKOV S V, KOZLOV M N, KEVBRINA M V, et al. A novel bacterium carrying out anaerobic ammonium oxidation in a reactor for biological treatment of the filtrate of wastewater fermented sludge[J]. Microbiology, 2013, 82(5): 628 − 636. doi: 10.1134/S002626171305007X
[41] 郑宇慧. 温度对厌氧氨氧化的影响研究[D]. 苏州: 苏州科技学院, 2011.
[42] 鲍林林, 赵建国, 李晓凯, 等. 常温低基质厌氧氨氧化反应器启动及其稳定性[J]. 环境工程学报, 2013, 7(3): 981 − 986.
[43] BAO L, ZHAO J, LI X, et al. Start-up and stability of Anammox bioreactor at normal temperature and low substrate concentration[J]. Chinese Journal of Environmental Engineering, 2013, 7(03): 981 − 986.
[44] LOTTI T, KLEEREBEZEM R, VAN L M C M. Effect of temperature change on anammox activity[J]. Biotechnology and Bioengineering, 2015, 112(1): 98 − 103. doi: 10.1002/bit.25333
[45] 郑贝贝. 耐冷菌Bacillus cereus MYB41-22群体感应系统与其温度适应性相关功能研究[D]. 昆明: 昆明理工大学, 2018.
[46] 彭永臻, 张向晖, 马斌, 等. 厌氧氨氧化菌群体感应机制[J]. 北京工业大学学报, 2018, 44(3): 449 − 454.
[47] 霍唐燃, 潘珏君, 刘思彤. 基于代谢组的厌氧氨氧化菌群对温度的响应机制[J]. 微生物学通报, 2019, 46(8): 1936 − 1945.
[48] HU H, WAN H, DONG L, et al. Surface hydroxyls regulation promotes light-induced cell detachment on TiO2 nanodot films[J]. Surface & Coatings Technology, 2019, 358: 461 − 466.
[49] WANG W, YAN Y, ZHAO Y, et al. Characterization of stratified EPS and their role in the initial adhesion of anammox consortia[J]. Water Research, 2020, 169(Feb.1): 115223.1 − 115223.11.
[50] WILEN B M, LUMLEY D, MATTSSON A, et al. Relationship between floc composition and flocculation and settling properties studied at a full scale activated sludge plant[J]. Water Research, 2008, 42(16): 4404 − 4418. doi: 10.1016/j.watres.2008.07.033
[51] 宋成康, 王亚宜, 韩海成, 等. 温度降低对厌氧氨氧化脱氮效能及污泥胞外聚合物的影响[J]. 中国环境科学, 2016, 36(7): 2006 − 2013. doi: 10.3969/j.issn.1000-6923.2016.07.015
[52] 胡宝兰, 郑平, 冯孝善. 新型生物脱氮技术的工艺研究[J]. 应用与环境生物学报, 1999(S1): 68 − 73. doi: 10.3321/j.issn:1006-687X.1999.Z1.018
[53] 王淑莹, 孙洪伟, 杨庆, 等. 传统生物脱氮反硝化过程的生化机理及动力学[J]. 应用与环境生物学报, 2008(5): 732 − 736. doi: 10.3321/j.issn:1006-687X.2008.05.029
[54] 祝贵兵, 彭永臻, 郭建华. 短程硝化反硝化生物脱氮技术[J]. 哈尔滨工业大学学报, 2008, 1(10): 1552 − 1557. doi: 10.3321/j.issn:0367-6234.2008.10.009
[55] MILIA S, TOCCO G, ERBY G, et al. Preliminary evaluation of sharon-anammox process feasibility to treat ammonium-rich effluents produced by double-stage anaerobic digestion of food waste[C]// Frontiers international conference on wastewater treatment and modelling. Springer, Cham, 2017: 536-543.
[56] 彭正阳. 单级全程自养脱氮推流式反应器处理生活污水的研究[D]. 哈尔滨: 哈尔滨工业大学, 2018.
[57] HUYNH T V, NGUYEN P D, PHAN T N, et al. Application of CANON process for nitrogen removal from anaerobically pretreated husbandry wastewater[J]. International Biodeterioration & Biodegradation, 2019, 136: 15 − 23.
[58] 李冬, 崔雅倩, 赵世勋, 等. 低温SNAD颗粒污泥工艺启动方式[J]. 环境科学, 2019, 40(1): 376 − 382.
[59] REINO C, CARRERA J. Low-strength wastewater treatment in an anammox UASB reactor: Effect of the liquid upflow velocity[J]. Chemical Engineering Journal, 2017, 313: 217 − 225. doi: 10.1016/j.cej.2016.12.051
[60] LIU W, JI X, WANG J, et al. Microbial community response to influent shift and lowering temperature in a two-stage mainstream deammonification process[J]. Bioresource Technology, 2018, 262: 132 − 140. doi: 10.1016/j.biortech.2018.04.082
[61] QIAN H, WANG Y-C, SUN F, et al. Effects of seasonal temperature variation on nitrogen removal from a tidal flow constructed wetland system with CANON process[J]. The Journal of Applied Ecology, 2020, 31(5): 1715 − 1724.
[62] WETT B. Development and implementation of a robust deammonification process[J]. Water Science and Technology:a Journal of the International Association on Water Pollution Research, 2007, 56(7): 81 − 88. doi: 10.2166/wst.2007.611
[63] DAIGGER, T. G. Oxygen and carbon requirements for biological nitrogen removal processes accomplishing nitrification, nitritation, and anammox[J]. Water Environment Research, 2014, 86(3): 204 − 209. doi: 10.2175/106143013X13807328849459
[64] JETTEN M S M, HORN S J, LOOSDRECHT M C M V. Towards a more sustainable wastewater treatment system[J]. Water Science & Technology, 1997, 35(9): 171 − 180.
[65] SOLIMAN M, ELDYASTI A. Ammonia-Oxidizing Bacteria (AOB): opportunities and applications-a review[J]. Reviews in Environmental Science and Bio-Technology, 2018, 17(2): 285 − 321. doi: 10.1007/s11157-018-9463-4
[66] PENG Y, ZHU G. Biological nitrogen removal with nitrification and denitrification via nitrite pathway[J]. Applied Microbiology & Biotechnology, 2006, 73(1): 15 − 26.
[67] AGRAWAL S, KARST S M, GILBERT E M, et al. The role of inoculum and reactor configuration for microbial community composition and dynamics in mainstream partial nitritation anammox reactors[J]. Microbiologyopen, 2017, 6(4): 1 − 15.
[68] AKABOCI T R V, GICH F, RUSCALLEDA M, et al. Assessment of operational conditions towards mainstream partial nitritation-anammox stability at moderate to low temperature: Reactor performance and bacterial community[J]. Chemical Engineering Journal, 2018, 350: 192 − 200. doi: 10.1016/j.cej.2018.05.115
[69] LV Y, PAN J, HUO T, et al. Enhance the treatment of low strength wastewater at low temperature with the coexistence system of AnAOB and heterotrophic bacteria: Performance and bacterial community[J]. Science of the Total Environment, 2020, 714: 136799. doi: 10.1016/j.scitotenv.2020.136799
[70] LAURENI M, FALAS P, ROBIN O, et al. Mainstream partial nitritation and anammox: long-term process stability and effluent quality at low temperatures[J]. Water Research, 2016, 101: 628 − 639. doi: 10.1016/j.watres.2016.05.005
[71] LIANG Z, LIU J-X, LI J. Decomposition and mineralization of aquatic humic substances (AHS) in treating landfill leachate using the Anammox process[J]. Chemosphere, 2009, 74(10): 1315 − 1320. doi: 10.1016/j.chemosphere.2008.11.073
[72] 解云飞, 徐文杰, 迟媛媛, 等. 厌氧氨氧化技术在市政污水中的应用和研究进展[J]. 工业水处理, 2019, 39(12): 1 − 6. doi: 10.11894/iwt.2018-1153
[73] GILBERT E M, AGRAWAL S, SCHWARTZ T, et al. Comparing different reactor configurations for Partial Nitritation/Anammox at low temperatures[J]. Water Research, 2015, 81: 92 − 100. doi: 10.1016/j.watres.2015.05.022
[74] 完颜德卿, 袁怡, 李祥, 等. 一种CANON工艺处理低氨氮废水的新模式[J]. 环境科学, 2017, 38(3): 1122 − 1129.
[75] WANG D, WANG G, ZHANG G, et al. Using graphene oxide to enhance the activity of anammox bacteria for nitrogen removal[J]. Bioresour Technology, 2013, 131: 527 − 530. doi: 10.1016/j.biortech.2013.01.099
[76] YIN X, QIAO S, ZHOU J, et al. Fast start-up of the anammox process with addition of reduced graphene oxides[J]. Chemical Engineering Journal, 2016, 283: 160 − 166. doi: 10.1016/j.cej.2015.07.059
[77] TOMASZEWSKI M, CEMA G, ZIEMBINSKA B A. Short-term effects of reduced graphene oxide on the anammox biomass activity at low temperatures[J]. Science of the Total Environment, 2019, 646: 206 − 211. doi: 10.1016/j.scitotenv.2018.07.283
[78] Yin X, Qiao S, Yu C, et al. Effects of reduced graphene oxide on the activities of anammox biomass and key enzymes[J]. Chemical Engineering Journal, 2015, 276: 106 − 112. doi: 10.1016/j.cej.2015.04.073
[79] ZHANG X, CHEN Z, ZHOU Y, et al. Impacts of the heavy metals Cu (II), Zn (II) and Fe (II) on an Anammox system treating synthetic wastewater in low ammonia nitrogen and low temperature: Fe (II) makes a difference[J]. Science of the Total Environment, 2019, 648: 798 − 804. doi: 10.1016/j.scitotenv.2018.08.206
[80] ZHANG X, ZHOU Y, XU T, et al. Toxic effects of CuO, ZnO and TiO2 nanoparticles in environmental concentration on the nitrogen removal, microbial activity and community of Anammox process[J]. Chemical Engineering Journal, 2018, 332: 42 − 48. doi: 10.1016/j.cej.2017.09.072
[81] 唐政坤, 张硕, 李光蕾, 等. 低温胁迫下Ca2+对厌氧氨氧化污泥脱氮效能影响研究[J]. 环境污染与防治, 2019, 41(3): 279 − 282.
[82] WANG G, DAI X, ZHANG D. Effects of NaCl and phenol on anammox performance in mainstream reactors with low nitrogen concentration and low temperature[J]. Biochemical Engineering Journal, 2019, 147: 72 − 80. doi: 10.1016/j.bej.2019.03.026
[83] OSAKA T, KIMURA Y, OTSUBO Y, et al. Temperature dependence for anammox bacteria enriched from freshwater sediments[J]. Journal of Bioscience and Bioengineering, 2012, 114(4): 429 − 434. doi: 10.1016/j.jbiosc.2012.05.003
[84] KHANH D, QUAN L, ZHANG W, et al. Effect of temperature on low-strength wastewater treatment by UASB reactor using poly(vinyl alcohol)-gel carrier[J]. Bioresource Technology, 2011, 102(24): 11147 − 11154. doi: 10.1016/j.biortech.2011.09.108
[85] 张硕, 李军, 向韬, 等. 低温胁迫下海藻糖强化厌氧氨氧化污泥活性研究[J]. 水处理技术, 2018, 44(11): 116 − 119. doi: 10.16796/j.cnki.1000-3770.2018.11.025
[86] ZHU W, LI J, DONG H, et al. Nitrogen removal performance and operation strategy of anammox process under temperature shock[J]. Biodegradation, 2017, 28(4): 261 − 274. doi: 10.1007/s10532-017-9794-9
[87] LOTTI T, KLEEREBEZEM R, HU Z, et al. Simultaneous partial nitritation and anammox at low temperature with granular sludge[J]. Water Research, 2014, 66: 111 − 121. doi: 10.1016/j.watres.2014.07.047
[88] YU J J, CHEN H, ZHANG J, et al. Enhancement of ANAMMOX activity by low-intensity ultrasound irradiation at ambient temperature[J]. Bioresource Technology, 2013, 142: 693 − 696. doi: 10.1016/j.biortech.2013.05.013
[89] ZHANG C, LI L, HU X, et al. Effects of a pulsed electric field on nitrogen removal through the ANAMMOX process at room temperature[J]. Bioresource Technology, 2019, 275: 225 − 231. doi: 10.1016/j.biortech.2018.12.037
[90] ZHANG C, LI L, WANG Y, et al. Enhancement of the ANAMMOX bacteria activity and granule stability through pulsed electric field at a lower temperature (16±1 ℃)[J]. Bioresource Technology, 2019: 121960.
[91] LU X, YIN Z, SOBOTKA D, et al. Modeling the pH effects on nitrogen removal in the anammox-enriched granular sludge[J]. Water Science & Technology, 2016, 75(2): 378 − 386.
[92] TOMASZEWSKI M, CEMA G, ZIEMBINSKA B A. Significance of pH control in anammox process performance at low temperature[J]. Chemosphere, 2017, 185: 439 − 444. doi: 10.1016/j.chemosphere.2017.07.034
[93] 张永辉, 彭永臻, 曾立云, 等. 常温低基质厌氧氨氧化ASBR反应器的快速启动[J]. 工业水处理, 2017, 37(2): 43 − 47. doi: 10.11894/1005-829x.2017.37(2).043
[94] 张彦江, 姚俊芹. 常温下UASB反应器厌氧氨氧化生物脱氮试验[J]. 安徽农业科学, 2018, 46(12): 81 − 83. doi: 10.3969/j.issn.0517-6611.2018.12.024
[95] 李祥, 黄勇, 郑宇慧, 等. 温度对厌氧氨氧化反应器脱氮效能稳定性的影响[J]. 环境科学, 2012, 33(4): 1288 − 1292. doi: 10.13227/j.hjkx.2012.04.047
[96] TANG C J, ZHENG P, WANG C H, et al. Performance of high-loaded ANAMMOX UASB reactors containing granular sludge[J]. Water Research, 2011, 45(1): 135 − 144. doi: 10.1016/j.watres.2010.08.018
[97] ISAKA K, SUMINO T, TSUNEDA S. High nitrogen removal performance at moderately low temperature utilizing anaerobic ammonium oxidation reactions[J]. Journal of Bioscience and Bioengineering, 2007, 103(5): 486 − 490. doi: 10.1263/jbb.103.486
[98] LIU T, LIM Z K, CHEN H, et al. Temperature-tolerated mainstream nitrogen removal by anammox and nitrite/nitrate-dependent anaerobic methane oxidation in a membrane biofilm reactor[J]. Environmental Science & Technology, 2020, 54(5): 3012 − 3021.
[99] WANG X, QI G, YAN Y, et al. Influence of temperature fluctuations on one-stage deammonification systems in northern cold region[J]. Environmental Science and Pollution Research, 2018, 25(19): 18632 − 18641. doi: 10.1007/s11356-018-2050-y
[100] REINO C, EUGENIA S O M, PEREZ J, et al. Stable long-term operation of an upflow anammox sludge bed reactor at mainstream conditions[J]. Water Research, 2018, 128: 331 − 340. doi: 10.1016/j.watres.2017.10.058
[101] DE C H, VLAEMINCK S E, DE W F, et al. One-stage partial nitritation/anammox at 15 ℃ on pretreated sewage: feasibility demonstration at lab-scale[J]. Applied Microbiology and Biotechnology, 2013, 97(23): 10199 − 10210. doi: 10.1007/s00253-013-4744-x
[102] LIU W, YANG D, CHEN W, et al. High-throughput sequencing-based microbial characterization of size fractionated biomass in an anoxic anammox reactor for low-strength wastewater at low temperatures[J]. Bioresource Technology, 2017, 231: 45 − 52. doi: 10.1016/j.biortech.2017.01.050
[103] DE C P, BESSIERE Y, HERNANDEZ R G, et al. Enrichment and adaptation yield high anammox conversion rates under low temperatures[J]. Bioresource Technology, 2018, 250: 505 − 512. doi: 10.1016/j.biortech.2017.11.079
[104] 李海玲, 李冬, 张杰, 等. 调控温度和沉降时间实现ANAMMOX颗粒快速启动及其稳定运行[J]. 环境科学, 2019, 40(2): 837 − 844.
[105] 张永辉. 厌氧氨氧化工艺的启动及影响因素试验研究[D]. 兰州: 兰州交通大学, 2017.
[106] 安芳娇, 彭永臻, 董志龙, 等. 不同运行策略下厌氧氨氧化的脱氮性能[J]. 环境科学, 2018, 39(6): 2770 − 2777.
[107] 周同, 于德爽, 李津, 等. 温度对海洋厌氧氨氧化菌脱氮效能的影响[J]. 环境科学, 2017, 38(5): 2044 − 2051.
[108] WU P, CHEN Y, JI X, et al. Fast start-up of the cold-anammox process with different inoculums at low temperature (13 ℃) in innovative reactor[J]. Bioresource Technology, 2018, 267: 696 − 703. doi: 10.1016/j.biortech.2018.07.026
[109] WU L, YAN Z, LI J, et al. Low temperature advanced nitrogen and sulfate removal from landfill leachate by nitrite-anammox and sulfate-anammox[J]. Environmental Pollution, 2020, 259: 113763 − 113763. doi: 10.1016/j.envpol.2019.113763