[1] VICEDO-CABRERA A M, SCOVRONICK N, SERA F, et al. The burden of heat-related mortality attributable to recent human-induced climate change [J]. Nature Climate Change, 2021, 11(6): 492-500. doi: 10.1038/s41558-021-01058-x
[2] 李晟. 高质量发展视角下产业结构升级对我国碳减排的影响 [J]. 可持续发展, 2021, 11(1): 149-159. doi: 10.12677/SD.2021.111018 LI S. The impact of industrial structure upgrading on my country’s carbon emission reduction from the perspective of high-quality development [J]. Sustainable Development, 2021, 11(1): 149-159(in Chinese). doi: 10.12677/SD.2021.111018
[3] 张朝晖, 陈敬良, 高钰, 等. 《蒙特利尔议定书》基加利修正案对制冷空调行业的影响分析 [J]. 制冷与空调, 2017, 17(1): 1-7,15. ZHANG Z H, CHEN J L, GAO Y, et al. Analysis on the influence of Kigali Amendment to Montreal Protocol to refrigeration and air-conditioning industry [J]. Refrigeration and Air-Conditioning, 2017, 17(1): 1-7,15(in Chinese).
[4] 倪吉, 杨奇. 实现碳中和, 对化工意味着什么 [J]. 中国石油和化工, 2020(11): 26-31. doi: 10.3969/j.issn.1008-1852.2020.11.006 NI J, YANG Q. What carbon neutrality means for the chemical industry [J]. China Petroleum and Chemical Industry, 2020(11): 26-31(in Chinese). doi: 10.3969/j.issn.1008-1852.2020.11.006
[5] 贾文志, 刘聪, 刘行, 等. 温室气体氢氟烃的处理与利用 [J]. 化工生产与技术, 2016, 23(4): 1-6, 8. doi: 10.3969/j.issn.1006-6829.2016.04.001 JIA W Z, LIU C, LIU X, et al. Treatment and utilization of greenhouse gases-HFCs [J]. Chemical Production and Technology, 2016, 23(4): 1-6, 8(in Chinese). doi: 10.3969/j.issn.1006-6829.2016.04.001
[6] 韩文锋, 靳碧波, 周强, 等. 三氟甲烷(HFC-23)的资源化转化利用 [J]. 化工进展, 2014, 33(2): 483-492. HAN W F, JIN B B, ZHOU Q, et al. Conversion and resource utilization of waste CHF3 gas [J]. Chemical Industry and Engineering Progress, 2014, 33(2): 483-492(in Chinese).
[7] PATIL P T, DIMITROV A, KIRMSE H, et al. Non-aqueous Sol-gel synthesis, characterization and catalytic properties of metal fluoride supported palladium nanoparticles [J]. Applied Catalysis B:Environmental, 2008, 78(1/2): 80-91.
[8] LI G L, NISHIGUCHI H, ISHIHARA T, et al. Catalytic dehydrofluorination of CF3CH3(HFC143a) into CF2CH2(HFC1132a) [J]. Applied Catalysis B:Environmental, 1998, 16(4): 309-317. doi: 10.1016/S0926-3373(97)00087-8
[9] GANDLER J R, YOKOYAMA T. The E2 transition state: Elimination reactions of 2-(2, 4-dinitrophenyl)ethyl halides [J]. Journal of the American Chemical Society, 1984, 106(1): 130-135. doi: 10.1021/ja00313a027
[10] SONG T Y, DONG Z X, SONG J D, et al. Dehydrochlorination of 1, 1, 2-trichloroethane over SiO2-supported alkali and transition metal catalysts: Tunable selectivity controlled by the acid - base properties of the catalysts [J]. Applied Catalysis B:Environmental, 2018, 236: 368-376. doi: 10.1016/j.apcatb.2018.04.018
[11] MALLIKARJUNA R V N, SUBRAMANIAN M A. Fluoroolefin manufacturing process: US6031141[P]. [2000-02-29].
[12] LIM S, KIM M S, CHOI J W, et al. Catalytic dehydrofluorination of 1, 1, 1, 2, 3-pentafluoropropane (HFC-245eb) to 2, 3, 3, 3-tetrafluoropropene (HFO-1234yf) using in situ fluorinated chromium oxyfluoride catalyst [J]. Catalysis Today, 2017, 293/294: 42-48. doi: 10.1016/j.cattod.2016.11.017
[13] TANG H D, DANG M M, LI Y Z, et al. Rational design of MgF2 catalysts with long-term stability for the dehydrofluorination of 1, 1-difluoroethane (HFC-152a) [J]. RSC Advances, 2019, 9(41): 23744-23751. doi: 10.1039/C9RA04250D
[14] RÜDIGER S, ELTANANY G, GROß U, et al. Real Sol-gel synthesis of catalytically active aluminium fluoride [J]. Journal of Sol-Gel Science and Technology, 2007, 41(3): 299-311. doi: 10.1007/s10971-006-9008-0
[15] CHRISTE K O, DIXON D A, MCLEMORE D, et al. On a quantitative scale for Lewis acidity and recent progress in polynitrogen chemistry [J]. Journal of Fluorine Chemistry, 2000, 101(2): 151-153. doi: 10.1016/S0022-1139(99)00151-7
[16] YANG H, WU S, CHEN Z F, et al. Catalytic performance for the conversion of potent fluorinated greenhouse gases by aluminium fluorides with different morphology [J]. Catalysis Letters, 2021, 151(7): 2065-2074. doi: 10.1007/s10562-020-03446-y
[17] JIA W Z, WU Q, LANG X W, et al. Influence of lewis acidity on catalytic activity of the porous alumina for dehydrofluorination of 1, 1, 1, 2-tetrafluoroethane to trifluoroethylene [J]. Catalysis Letters, 2015, 145(2): 654-661. doi: 10.1007/s10562-014-1409-z
[18] ÇıLGı G K, CETIŞLI H. Thermal decomposition kinetics of aluminum sulfate hydrate [J]. Journal of Thermal Analysis and Calorimetry, 2009, 98(3): 855-861. doi: 10.1007/s10973-009-0389-5
[19] CHOU K S, SOONG C S. Kinetics of the multistage dehydration of aluminum sulfate hydrate [J]. Thermochimica Acta, 1984, 81: 305-310. doi: 10.1016/0040-6031(84)85135-7
[20] CHOU K S, SOONG C S. Kinetics of the thermal decomposition of aluminum sulfate [J]. Thermochimica Acta, 1984, 78(1/2/3): 285-295.
[21] BARTHOLOMEW C H, RAHMATI M, REYNOLDS M A. Optimizing preparations of Co Fischer-Tropsch catalysts for stability against sintering [J]. Applied Catalysis A:General, 2020, 602: 117609. doi: 10.1016/j.apcata.2020.117609
[22] ZARUBINA V, MELIÁN-CABRERA I. On the geometric trajectories of pores during the thermal sintering of relevant catalyst supports [J]. Scripta Materialia, 2021, 194: 113679. doi: 10.1016/j.scriptamat.2020.113679
[23] PAN C, GUO Z L, DAI H, et al. Anti-sintering mesoporous Ni-Pd bimetallic catalysts for hydrogen production via dry reforming of methane [J]. International Journal of Hydrogen Energy, 2020, 45(32): 16133-16143. doi: 10.1016/j.ijhydene.2020.04.066
[24] WANG Z K, HAN W F, TANG H D, et al. CaBaFx composite as robust catalyst for the pyrolysis of 1-chloro-1, 1-difluoroethane to vinylidene fluoride [J]. Catalysis Communications, 2019, 120: 42-45. doi: 10.1016/j.catcom.2018.11.011
[25] WANG J C, HAN W F, WANG S C, et al. Synergistic catalysis of carbon-partitioned LaF3–BaF2 composites for the coupling of CH4 with CHF3 to VDF [J]. Catalysis Science & Technology, 2019, 9(6): 1338-1348.
[26] LI H R, LIU C L, WANG Y, et al. Synthesis, characterization and n-hexane hydroisomerization performances of Pt supported on alkali treated ZSM-22 and ZSM-48 [J]. RSC Advances, 2018, 8(51): 28909-28917. doi: 10.1039/C8RA04858D
[27] MAITY J, JACOB C, DAS C K, et al. Direct fluorination of Twaron fiber and investigation of mechanical thermal and morphological properties of high density polyethylene and Twaron fiber composites [J]. Journal of Applied Polymer Science, 2008, 107(6): 3739-3749. doi: 10.1002/app.27510
[28] PENG T, CAI R Q, CHEN C F, et al. Surface modification of Para-aramid fiber by direct fluorination and its effect on the interface of aramid/epoxy composites [J]. Journal of Macromolecular Science, Part B, 2012, 51(3): 538-550. doi: 10.1080/00222348.2011.609777
[29] OU Y P, JIAO Q J, LI N, et al. Pyrolysis of ammonium perfluorooctanoate (APFO) and its interaction with nano-aluminum [J]. Chemical Engineering Journal, 2021, 403: 126367. doi: 10.1016/j.cej.2020.126367
[30] LIANG J, ROSELIUS M. FTIR study of a perfluoroacyl fluoride chemisorption onto alumina [J]. Journal of Fluorine Chemistry, 1994, 67(2): 113-117. doi: 10.1016/0022-1139(93)02958-H
[31] LIMCHAROEN A, LIMSUWAN P, PAKPUM C, et al. Characterisation of C—F polymer film formation on the air-bearing surface etched sidewall of fluorine-based plasma interacting with Al2O3–TiC substrate [J]. Journal of Nanomaterials, 2013, 2013: 1-6.