[1] |
SPASIANO D, MAROTTA R, MALATO S, et al. Solar photocatalysis: Materials, reactors, some commercial, and pre-industrialized applications. A comprehensive approach [J]. Applied Catalysis B:Environmental, 2015, 170/171: 90-123. doi: 10.1016/j.apcatb.2014.12.050
|
[2] |
LACOMBE S, KELLER N. Photocatalysis: Fundamentals and applications in JEP 2011 [J]. Environmental Science and Pollution Research, 2012, 19(9): 3651-3654. doi: 10.1007/s11356-012-1040-8
|
[3] |
LIU B S, WU H, PARKIN I P. New insights into the fundamental principle of semiconductor photocatalysis [J]. ACS Omega, 2020, 5(24): 14847-14856. doi: 10.1021/acsomega.0c02145
|
[4] |
KUMAR V, SINHA A, FAROOQUE U. Concentration and temperature dependence of the energy gap in some binary and alloy semiconductors [J]. Infrared Physics & Technology, 2015, 69: 222-227.
|
[5] |
OKAZAKI S, TOMO T, MIMURO M. Direct measurement of singlet oxygen produced by four chlorin-ringed chlorophyll species in acetone solution [J]. Chemical Physics Letters, 2010, 485(1/2/3): 202-206.
|
[6] |
IBHADON A, FITZPATRICK P. Heterogeneous photocatalysis: Recent advances and applications [J]. Catalysts, 2013, 3(1): 189-218. doi: 10.3390/catal3010189
|
[7] |
PARRINO F, LODDO V, AUGUGLIARO V, et al. Heterogeneous photocatalysis: Guidelines on experimental setup, catalyst characterization, interpretation, and assessment of reactivity [J]. Catalysis Reviews, 2019, 61(2): 163-213. doi: 10.1080/01614940.2018.1546445
|
[8] |
LU A H, LI Y, DING H R, et al. Photoelectric conversion on Earth's surface via widespread Fe- and Mn-mineral coatings [J]. PNAS, 2019, 116(20): 9741-9746. doi: 10.1073/pnas.1902473116
|
[9] |
鲁安怀, 李艳, 王鑫, 等. 关键带中天然半导体矿物光电子的产生与作用 [J]. 地学前缘, 2014, 21(3): 256-264. doi: 10.13745/j.esf.2014.03.027
LU A H, LI Y, WANG X, et al. The photoelectron generation from semiconducting minerals and its effects in critical zone [J]. Earth Science Frontiers, 2014, 21(3): 256-264(in Chinese). doi: 10.13745/j.esf.2014.03.027
|
[10] |
SHANG J, HAO W C, LV X, et al. Bismuth oxybromide with reasonable photocatalytic reduction activity under visible light [J]. ACS Catalysis, 2014, 4(3): 954-961. doi: 10.1021/cs401025u
|
[11] |
任桂平, 孙曼仪, 鲁安怀, 等. 纳米赤铁矿电极光电催化特性及苯酚降解活性研究 [J]. 岩石矿物学杂志, 2017, 36(6): 825-832. doi: 10.3969/j.issn.1000-6524.2017.06.007
REN G P, SUN M Y, LU A H, et al. Photoelectrochemical performance of nano-hematite electrode and photoelectrocatalytic activity toward oxidation of phenol [J]. Acta Petrologica et Mineralogica, 2017, 36(6): 825-832(in Chinese). doi: 10.3969/j.issn.1000-6524.2017.06.007
|
[12] |
LIU J H, YANG R, LI S M. Preparation and characterization of high photoactive TiO2 catalyst using the UV irradiation-induced Sol-gel method [J]. Journal of University of Science and Technology Beijing, Mineral, Metallurgy, Material, 2006, 13(4): 350-354. doi: 10.1016/S1005-8850(06)60072-8
|
[13] |
BORGES M E, SIERRA M, CUEVAS E, et al. Photocatalysis with solar energy: Sunlight-responsive photocatalyst based on TiO2 loaded on a natural material for wastewater treatment [J]. Solar Energy, 2016, 135: 527-535. doi: 10.1016/j.solener.2016.06.022
|
[14] |
JIANG Z F, SUN H L, WANG T Q, et al. Nature-based catalyst for visible-light-driven photocatalytic CO2 reduction [J]. Energy & Environmental Science, 2018, 11(9): 2382-2389.
|
[15] |
JIANG H L, LI X Q, LI M L, et al. A new strategy for triggering photocatalytic activity of Cytrochrome P450 by coupling of semiconductors [J]. Chemical Engineering Journal, 2019, 358: 58-66. doi: 10.1016/j.cej.2018.09.199
|
[16] |
鲁安怀, 李艳, 丁竑瑞, 等. 地表“矿物膜”: 地球“新圈层” [J]. 岩石学报, 2019, 35(1): 119-128. doi: 10.18654/1000-0569/2019.01.08
LU A H, LI Y, DING H R, et al. “Mineral membrane” of the surface: “New sphere” of the Earth [J]. Acta Petrologica Sinica, 2019, 35(1): 119-128(in Chinese). doi: 10.18654/1000-0569/2019.01.08
|
[17] |
鲁安怀, 李艳, 丁竑瑞, 等. 天然矿物光电效应: 矿物非经典光合作用 [J]. 地学前缘, 2020, 27(5): 179-194.
LU A H, LI Y, DING H R, et al. Natural mineral photoelectric effect: Non-classical mineral photosynthesis [J]. Earth Science Frontiers, 2020, 27(5): 179-194(in Chinese).
|
[18] |
鲁安怀, 李艳, 丁竑瑞, 等. 矿物光电子能量及矿物与微生物协同作用 [J]. 矿物岩石地球化学通报, 2018, 37(1): 1-15,158. doi: 10.19658/j.issn.1007-2802.2018.37.011
LU A H, LI Y, DING H R, et al. Mineralogical photoelectrons and minerals and microorganisms synergistic interactions [J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2018, 37(1): 1-15,158(in Chinese). doi: 10.19658/j.issn.1007-2802.2018.37.011
|
[19] |
靳青, 毕宇霖, 刘晓牧, 等. 类胡萝卜素代谢及功能研究进展 [J]. 动物营养学报, 2014, 26(12): 3561-3571. doi: 10.3969/j.issn.1006-267x.2014.12.003
JIN Q, BI Y L, LIU X M, et al. Recent advances on research of carotenoid metabolism and functions [J]. Chinese Journal of Animal Nutrition, 2014, 26(12): 3561-3571(in Chinese). doi: 10.3969/j.issn.1006-267x.2014.12.003
|
[20] |
吴志强, 周韦. 叶绿素的类别概述 [J]. 生物学通报, 2014, 49(9): 12-14.
WU Z Q, ZHOU W. An overview of the categories of chlorophyl [J]. Bulletin of Biology, 2014, 49(9): 12-14(in Chinese).
|
[21] |
马丞博. 藻蓝胆素的制备及其作为光敏剂的初步研究[D]. 烟台: 烟台大学, 2020.
MA C B. Preparation of phycocyanobilin and its preliminary study as photosensitizer[D]. Yantai: Yantai University, 2020(in Chinese).
|
[22] |
GIBBONS D, FLANAGAN K J, POUNOT L, et al. Structure and conformation of photosynthetic pigments and related compounds. 15. Conformational analysis of chlorophyll derivatives - implications for hydroporphyrins in vivo [J]. Photochemical & Photobiological Sciences, 2019, 18(6): 1479-1494.
|
[23] |
LUO L J, LAI X Y, CHEN B W, et al. Chlorophyll catalyse the photo-transformation of carcinogenic benzo[a]Pyrene in water [J]. Scientific Reports, 2015, 5(1): 12776. doi: 10.1038/srep12776
|
[24] |
CHEN M. Chlorophyll modifications and their spectral extension in oxygenic photosynthesis [J]. Annual Review of Biochemistry, 2014, 83: 317-340. doi: 10.1146/annurev-biochem-072711-162943
|
[25] |
张珠, 姜齐永, 李家柱, 等. 叶绿素类四吡咯大环分子的重排反应[J]. 化学进展, 2017, 29(增刊2): 262-284.
ZHANG Z, JIANG Q Y, LI J Z, et al. Rearrangement reactions of chlorophyllous tetrapyrrole macrocyclic molecules[J]. Progress in Chemistry, 2017, 29(Sup 2): 262-284(in Chinese).
|
[26] |
POSPÍŠIL P. Production of reactive oxygen species by photosystem II as a response to light and temperature stress [J]. Frontiers in Plant Science, 2016, 7: 1950.
|
[27] |
TRIANTAPHYLIDÈS C, HAVAUX M. Singlet oxygen in plants: Production, detoxification and signaling [J]. Trends in Plant Science, 2009, 14(4): 219-228. doi: 10.1016/j.tplants.2009.01.008
|
[28] |
PIBIRI I, BUSCEMI S, PALUMBO PICCIONELLO A, et al. Photochemically produced singlet oxygen: Applications and perspectives [J]. ChemPhotoChem, 2018, 2(7): 535-547. doi: 10.1002/cptc.201800076
|
[29] |
ALVEY R M, BISWAS A, SCHLUCHTER W M, et al. Attachment of noncognate chromophores to CpcA of Synechocystis sp PCC 6803 and Synechococcus sp PCC 7002 by heterologous expression in Escherichia coli. [J]. Biochemistry, 2011, 50(22): 4890-4902. doi: 10.1021/bi200307s
|
[30] |
BLOT N, WU X J, de THOMAS J C, et al. Phycourobilin in trichromatic phycocyanin from oceanic cyanobacteria is formed post-translationally by a phycoerythrobilin lyase-isomerase [J]. Journal of Biological Chemistry, 2009, 284(14): 9290-9298. doi: 10.1074/jbc.M809784200
|
[31] |
PINTO I F D, CHAVES-FILHO A D B, CUNHA D D, et al. Cytochrome c modification and oligomerization induced by cardiolipin hydroperoxides in a membrane mimetic model [J]. Archives of Biochemistry and Biophysics, 2020, 693: 108568. doi: 10.1016/j.abb.2020.108568
|
[32] |
ZHANG B, CHENG H Y, WANG A J. Extracellular electron transfer through visible light induced excited-state outer membrane C-type cytochromes of Geobacter sulfurreducens [J]. Bioelectrochemistry, 2021, 138: 107683. doi: 10.1016/j.bioelechem.2020.107683
|
[33] |
ZENG Y, ZHOU X, QI R L, et al. Photoactive conjugated polymer-based hybrid biosystems for enhancing cyanobacterial photosynthesis and regulating redox state of protein [J]. Advanced Functional Materials, 2021, 31(8): 2007814. doi: 10.1002/adfm.202007814
|
[34] |
刘砚弘. 溶解性有机质及其与铁共存时的光化学活性研究[D]. 南京: 南京林业大学, 2019.
LIU Y H. Research on photochemical activity of dissolved organic matter and its coexistence with iron[D]. Nanjing: Nanjing Forestry University, 2019(in Chinese).
|
[35] |
REN D, HUANG B, YANG B Q, et al. Mitigating 17α-ethynylestradiol water contamination through binding and photosensitization by dissolved humic substances [J]. Journal of Hazardous Materials, 2017, 327: 197-205. doi: 10.1016/j.jhazmat.2016.12.054
|
[36] |
BODHIPAKSHA L C, SHARPLESS C M, CHIN Y P, et al. Triplet photochemistry of effluent and natural organic matter in whole water and isolates from effluent-receiving rivers [J]. Environmental Science & Technology, 2015, 49(6): 3453-3463.
|
[37] |
刘雪石, 乔显亮, 刘远. DOM的光化学活性及其对污染物光解的影响 [J]. 环境科学与技术, 2017, 40(1): 85-94.
LIU X S, QIAO X L, LIU Y. Photoreactivity of DOM and its effect on the photo-transformation of pollutants [J]. Environmental Science & Technology, 2017, 40(1): 85-94(in Chinese).
|
[38] |
DU Z Y, HE Y S, FAN J N, et al. Predicting apparent singlet oxygen quantum yields of dissolved black carbon and humic substances using spectroscopic indices [J]. Chemosphere, 2018, 194: 405-413. doi: 10.1016/j.chemosphere.2017.11.172
|
[39] |
ZHOU Z C, CHEN B N, QU X L, et al. Dissolved black carbon as an efficient sensitizer in the photochemical transformation of 17β-estradiol in aqueous solution [J]. Environmental Science & Technology, 2018, 52(18): 10391-10399.
|
[40] |
QI Y Z, FU W J, TIAN J W, et al. Dissolved black carbon is not likely a significant refractory organic carbon pool in rivers and oceans [J]. Nature Communications, 2020, 11: 5051. doi: 10.1038/s41467-020-18808-8
|
[41] |
TIAN Y J, FENG L, WANG C, et al. Dissolved black carbon enhanced the aquatic photo-transformation of chlortetracycline via triplet excited-state species: The role of chemical composition [J]. Environmental Research, 2019, 179: 108855. doi: 10.1016/j.envres.2019.108855
|
[42] |
WANG H, ZHOU H X, MA J Z, et al. Triplet photochemistry of dissolved black carbon and its effects on the photochemical formation of reactive oxygen species [J]. Environmental Science & Technology, 2020, 54(8): 4903-4911.
|
[43] |
NOSAKA Y, NOSAKA A Y. Generation and detection of reactive oxygen species in photocatalysis [J]. Chemical Reviews, 2017, 117(17): 11302-11336. doi: 10.1021/acs.chemrev.7b00161
|
[44] |
NOSAKA Y, NOSAKA A. Understanding hydroxyl radical (•OH) generation processes in photocatalysis [J]. ACS Energy Letters, 2016, 1(2): 356-359. doi: 10.1021/acsenergylett.6b00174
|
[45] |
PEKAKIS P A, XEKOUKOULOTAKIS N P, MANTZAVINOS D. Treatment of textile dyehouse wastewater by TiO2 photocatalysis [J]. Water Research, 2006, 40(6): 1276-1286. doi: 10.1016/j.watres.2006.01.019
|
[46] |
MACFARLANE J W, JENKINSON H F, SCOTT T B. Sterilization of microorganisms on jet spray formed titanium dioxide surfaces [J]. Applied Catalysis B:Environmental, 2011, 106(1/2): 181-185.
|
[47] |
GOGNIAT G, DUKAN S. TiO2 photocatalysis causes DNA damage via Fenton reaction-generated hydroxyl radicals during the recovery period [J]. Applied and Environmental Microbiology, 2007, 73(23): 7740-7743. doi: 10.1128/AEM.01079-07
|
[48] |
CHEN M, ZHOU X F, CHEN X Y, et al. Mechanisms of nitrous oxide emission during photoelectrotrophic denitrification by self-photosensitized Thiobacillus denitrificans [J]. Water Research, 2020, 172: 115501. doi: 10.1016/j.watres.2020.115501
|
[49] |
SHARPLESS C M, AESCHBACHER M, PAGE S E, et al. Photooxidation-induced changes in optical, electrochemical, and photochemical properties of humic substances [J]. Environmental Science & Technology, 2014, 48(5): 2688-2696.
|
[50] |
CARLOS L, MÁRTIRE D O, GONZALEZ M C, et al. Photochemical fate of a mixture of emerging pollutants in the presence of humic substances [J]. Water Research, 2012, 46(15): 4732-4740. doi: 10.1016/j.watres.2012.06.022
|
[51] |
LI Y, LU A H, WANG X, et al. Semiconducting mineral photocatalytic regeneration of Fe2+Promotes carbon dioxide acquisition by Acidithiobacillus ferrooxidans [J]. Acta Geologica Sinica - English Edition, 2013, 87(3): 761-766. doi: 10.1111/1755-6724.12087
|
[52] |
KIM D, SAKIMOTO K K, HONG D C, et al. Artificial photosynthesis for sustainable fuel and chemical production [J]. Angewandte Chemie (International Ed. in English), 2015, 54(11): 3259-3266. doi: 10.1002/anie.201409116
|
[53] |
CESTELLOS-BLANCO S, ZHANG H, KIM J M, et al. Photosynthetic semiconductor biohybrids for solar-driven biocatalysis [J]. Nature Catalysis, 2020, 3(3): 245-255. doi: 10.1038/s41929-020-0428-y
|
[54] |
SAKIMOTO K K, WONG A B, YANG P D. Self-photosensitization of nonphotosynthetic bacteria for solar-to-chemical production [J]. Science, 2016, 351(6268): 74-77. doi: 10.1126/science.aad3317
|
[55] |
YE J, YU J, ZHANG Y Y, et al. Light-driven carbon dioxide reduction to methane by Methanosarcina barkeri-CdS biohybrid [J]. Applied Catalysis B:Environmental, 2019, 257: 117916. doi: 10.1016/j.apcatb.2019.117916
|
[56] |
CHEN M, ZHOU X F, YU Y Q, et al. Light-driven nitrous oxide production via autotrophic denitrification by self-photosensitized Thiobacillus denitrificans [J]. Environment International, 2019, 127: 353-360. doi: 10.1016/j.envint.2019.03.045
|
[57] |
黄绍福, 靖宪月, 陈曼, 等. 光驱动Pseudomonas stutzeri-CdS半人工光合系统固氮产氨效果与机制 [J]. 中国科学:技术科学, 2021, 51(4): 435-445. doi: 10.1360/SST-2020-0238
HUANG S F, JING X Y, CHEN M, et al. Feasibility and mechanism of light-driven nitrogen reduction to ammonium by a Pseudomonas stutzeri-CdS semi-artificial photosynthetic system [J]. Scientia Sinica (Technologica), 2021, 51(4): 435-445(in Chinese). doi: 10.1360/SST-2020-0238
|
[58] |
ZHU G L, YANG Y, LIU J, et al. Enhanced photocurrent production by the synergy of hematite nanowire-arrayed photoanode and bioengineered Shewanella oneidensis MR-1 [J]. Biosensors & Bioelectronics, 2017, 94: 227-234.
|
[59] |
淡猛, 蔡晴, 向将来, 等. 用于光催化分解硫化氢制氢的金属硫化物 [J]. 化学进展, 2020, 32(7): 917-926.
DAN M, CAI Q, XIANG J L, et al. Metal sulfide semiconductors for photocatalytic hydrogen production from waste hydrogen sulfide [J]. Progress in Chemistry, 2020, 32(7): 917-926(in Chinese).
|
[60] |
HUANG S F, TANG J H, LIU X, et al. Fast light-driven biodecolorization by a Geobacter sulfurreducens–CdS biohybrid [J]. ACS Sustainable Chemistry & Engineering, 2019, 7(18): 15427-15433.
|
[61] |
REN G P, YAN Y C, NIE Y, et al. Natural extracellular electron transfer between semiconducting minerals and electroactive bacterial communities occurred on the rock varnish [J]. Frontiers in Microbiology, 2019, 10: 293. doi: 10.3389/fmicb.2019.00293
|
[62] |
LI Y Z, LI Y, LIU Y, et al. Photoreduction of inorganic carbon(+IV) by elemental sulfur: Implications for prebiotic synthesis in terrestrial hot springs [J]. Science Advances, 2020, 6(47): 3687. doi: 10.1126/sciadv.abc3687
|