[1] |
国家统计局. 中国统计年鉴2021[M]. 中国统计出版社, 2021.
|
[2] |
郑祥, 许海朋, 范庆文, 等. 餐厨垃圾厌氧消化处理技术研究进展[J]. 现代化工, 2022, 42(2): 10-14. doi: 10.16606/j.cnki.issn0253-4320.2022.02.003
|
[3] |
EICH-GREATOREX S, VIVEKANAND V, ESTEVEZ M M, et al. Biogas digestates based on lignin-rich feedstock–potential as fertilizer and soil amendment[J]. Archives of Agronomy and Soil Science, 2018, 64(3): 347-359. doi: 10.1080/03650340.2017.1352086
|
[4] |
ARTHURSON V. Closing the global energy and nutrient cycles through application of biogas residue to agricultural land – potential benefits and drawbacks[J]. Energies, 2009, 2(2): 226-42. doi: 10.3390/en20200226
|
[5] |
AGRAFIOTO E, BOURAS G, KAIDERIS D, et al. Biochar production by sewage sludge pyrolysis[J]. Journal of Analytical and Applied Pyrolysis, 2013, 101: 72-78. doi: 10.1016/j.jaap.2013.02.010
|
[6] |
HUANG W W, GONG F Y, FAN M H, et al. Production of light olefins by catalytic conversion of lignocellulosic biomass with HZSM-5 zeolite impregnated with 6wt. % lanthanum[J]. Bioresource Technology, 2012, 121: 248-255. doi: 10.1016/j.biortech.2012.05.141
|
[7] |
JIN J W, WANG M Y, CAO Y C, et al. Cumulative effects of bamboo sawdust addition on pyrolysis of sewage sludge: Biochar properties and environmental risk from metals[J]. Bioresource Technology, 2016, 228: 218-226.
|
[8] |
ZHENG Y, ZHANG Y M, XU J N, et al. Co-pyrolysis behavior of fermentation residues with woody sawdust by thermogravimetric analysis and a vacuum reactor[J]. Bioresource Technology, 2017, 245: 449-455. doi: 10.1016/j.biortech.2017.07.168
|
[9] |
方诗雯. 城市生活垃圾与造纸污泥混合热解特性及其机理研究[D]. 华南理工大学, 2019.
|
[10] |
FANG S W, YU Z S, Ma X Q, et al. Co-pyrolysis characters between combustible solid waste and paper mill sludge by TG-FTIR and Py-GC/MS[J]. Energy Conversion and Management, 2017, 144: 114-122. doi: 10.1016/j.enconman.2017.04.046
|
[11] |
代敏怡, 郭占斌, 赵立欣, 等. 玉米秸秆与市政污泥混合热解特性及动力学分析[J]. 农业工程学报, 2021, 37(2): 242-250. doi: 10.11975/j.issn.1002-6819.2021.2.028
|
[12] |
LIN Y, LIAO Y F, YU Z S, et al. Co-pyrolysis kinetics of sewage sludge and oil shale thermal decomposition using TGA–FTIR analysis[J]. Energy Conversion and Management, 2016, 118: 345-352. doi: 10.1016/j.enconman.2016.04.004
|
[13] |
常风民. 城市污泥与煤混合热解特性及中试热解设备研究[D]. 中国矿业大学(北京), 2013.
|
[14] |
GAO N B, LI J J, QI B Y, et al. Thermal analysis and products distribution of dried sewage sludge pyrolysis[J]. Journal of Analytical and Applied Pyrolysis, 2014, 105: 43-48. doi: 10.1016/j.jaap.2013.10.002
|
[15] |
黄博, 张傑, 常风民, 等. 餐厨垃圾分选有机废物热解动力学特性分析[J]. 环境工程学报, 2017, 11(11): 6000-6006. doi: 10.12030/j.cjee.201612204
|
[16] |
刘田涛. 熔盐原位催化松木颗粒热解实验研究[D]. 内蒙古科技大学, 2021.
|
[17] |
HE F, YI W M, BAI X Y. Investigation on caloric requirement of biomass pyrolysis using TG-DSC analyzer[J]. Energy Conversion and Management, 2006, 47(15): 2461-2469.
|
[18] |
黄娜, 高岱巍, 李建伟, 等. 生物质三组分热解反应及动力学的比较[J]. 北京化工大学学报(自然科学版), 2007, 34(5): 462-466. doi: 10.13543/j.cnki.bhxbzr.2007.05.019
|
[19] |
胡亿明. 木质生物质各组分热解过程和热力学特性研究[D]. 中国林业科学研究院, 2013.
|
[20] |
徐期勇, 章佳文, 刘虎, 等. 市政污泥与木屑共热解特性及动力学分析[J]. 可再生能源, 2021, 39(9): 1150-1156. doi: 10.3969/j.issn.1671-5292.2021.09.003
|
[21] |
JIANG L, HU S, SUN L S, et al. Influence of different demineralization treatments on physicochemical structure and thermal degradation of biomass[J]. Bioresource Technology, 2013, 146(10): 254-60.
|
[22] |
王冠, 赵立欣, 孟海波, 等. 我国生物质热解特性及工艺研究进展[J]. 节能技术, 2014, 32(2): 120-124.
|
[23] |
谭洪, 王树荣, 骆仲泱, 等. 木质素快速热裂解试验研究[J]. 浙江大学学报(工学版), 2005, 39(5): 710-714. doi: 10.3785/j.issn.1008-973X.2005.05.023
|
[24] |
常风民, 王启宝, 王凯军. 城市污泥与煤混合热解特性及动力学分析[J]. 环境工程学报, 2015, 9(5): 2412-2418. doi: 10.12030/j.cjee.20150562
|
[25] |
葛振, 魏源送, 刘建伟, 等. 沼渣特性及其资源化利用探究[J]. 中国沼气, 2014, 32(3): 74-82. doi: 10.3969/j.issn.1000-1166.2014.03.017
|