[1] |
U. S. EPA. Superfund Remedy Report 15th edition[EB/OL]. (2017-07)[2021-12-15]. Office of Solid Waste and Emergency Response, ERP-542-R-17-001. https://www.epa.gov/sites/default/files/2017-09/documents/100000349.pdf.
|
[2] |
SHEN Z, JIN F, O'CONNOR D, et al. Solidification/stabilization for soil remediation: an old technology with new vitality[J]. Environmental Science & Technology, 2019, 53(20): 11615 − 11617.
|
[3] |
梁竞, 王世杰, 张文毓, 等. 美国污染场地修复技术对我国修复行业发展的启示[J]. 环境工程, 2021, 39(6): 173 − 178.
|
[4] |
张雅贤, 方战强. 重金属污染场地修复技术的专利计量分析[J]. 环境工程学报, 2019, 13(12): 3019 − 3026. doi: 10.12030/j.cjee.201810194
|
[5] |
生态环境部. 建设用地土壤污染风险管控和修复术语: HJ 682—2019[S/OL]. (2019-12-05)[2021-12-15]. https://www.mee.gov.cn/ywgz/fgbz/bz/bzwb/trhj/201912/W020191224561280943512.pdf.
|
[6] |
环境保护部. 污染地块修复技术指南-固化/稳定化技术(试行)(征求意见稿)[EB/OL]. (2017-11-22)[2021-12-15]. https://www.mee.gov.cn/gkml/hbb/bgth/201711/W020171129373036453932.pdf.
|
[7] |
WILES C C. A review of solidification/stabilization technology[J]. Journal of Hazardous Materials, 1987, 14(1): 5 − 21. doi: 10.1016/0304-3894(87)87002-4
|
[8] |
ILIC M R, POLIC P S. Solidification/stabilization technologies for the prevention of surface and ground water pollution from hazardous wastes[J]. Springer Berlin Heidelberg, 2005, 3: 159 − 189.
|
[9] |
生态环境部. 污染地块风险管控与土壤修复效果评估技术导则(试行): HJ 25.5—2018 [S/OL]. (2018-12-29)[2021-12-16]. http://www.mee.gov.cn/ywgz/fgbz/bz/bzwb/wrfzjszc/201901/W020200410503176383211.pdf.
|
[10] |
BATES E, HILLS C. Stabilization and solidification of contaminated soil and waste: A manual of practice[J/OL]. (2016-01-29)[2021-12-15]. https://clu-in.org/download/techfocus/stabilization/S-S-Manual-of-Practice.pdf.
|
[11] |
姚燕, 王昕, 颜碧兰, 等. 水泥水化产物结构及其对重金属离子固化研究进展[J]. 硅酸盐通报, 2012, 31(5): 1138 − 1144. doi: 10.16552/j.cnki.issn1001-1625.2012.05.033
|
[12] |
ANDRADE F R D, MARINGOLO V, KIHARA Y. Incorporation of V, Zn and Pb into the crystalline phases of portland clinker[J]. Cement and Concrete Research, 2003, 33(1): 63 − 71. doi: 10.1016/S0008-8846(02)00928-6
|
[13] |
MAKUL N, FEDIUK R, AMRAN M, et al. Use of recycled concrete aggregates in production of green cement-based concrete composites: a review[J]. Crystals, 2021, 11(3): 232 − 232. doi: 10.3390/cryst11030232
|
[14] |
CHEN S C, ZOU S Y, HSU H M. Effects of recycled fine aggregates and inorganic crystalline materials on the strength and pore structures of cement-based composites[J]. Crystals, 2021, 11(6): 587 − 587. doi: 10.3390/cryst11060587
|
[15] |
王菲, 徐汪祺. 固化/稳定化和软土加固污染土的强度和浸出特性研究[J]. 岩土工程学报, 2020, 42(10): 1955 − 1961.
|
[16] |
曹智国, 章定文, 彭之晟, 等. 水泥固化铅污染土碳化深度变化规律及预测方法[J]. 东南大学学报(自然科学版), 2021, 51(4): 631 − 639. doi: 10.3969/j.issn.1001-0505.2021.04.012
|
[17] |
LOMBI E, HAMON R E, MCGRATH S P, et al. Lability of Cd, Cu, and Zn in polluted soils treated with lime, beringite, and red mud and identification of a non-labile colloidal fraction of metals using istopic techniques.[J]. Environmental Science & Technology, 2003, 37(5): 979 − 984.
|
[18] |
张向军. 石灰、粉煤灰处理Cd、Pb、Cr污染土壤的试验研究[D]. 重庆: 重庆大学, 2009.
|
[19] |
薛永杰, 朱书景, 侯浩波. 石灰粉煤灰固化重金属污染土壤的试验研究[J]. 粉煤灰, 2007(3): 10 − 12.
|
[20] |
唐山平, 孙志恒, 陈莲芳. 石灰稳定土在道路工程中的应用[J]. 中国水利水电科学研究院学报, 2010, 8(4): 314 − 318. doi: 10.3969/j.issn.1672-3031.2010.04.014
|
[21] |
伊如汗. 炭石灰对土壤中的Pb和Cd的化学固定修复[D]. 北京: 北京化工大学, 2013.
|
[22] |
XU D M, FU R B, WANG J X, et al. Chemical stabilization remediation for heavy metals in contaminated soils on the latest decade: Available stabilizing materials and associated evaluation methods-A critical review[J]. Journal of Cleaner Production, 2021, 321(1): 128730.
|
[23] |
YUAN G D, THENG B K G, CHURCHMAN G J, et al. Clays and clay minerals for pollution control[J]. Developments in Clay Science, 2013(5): 587 − 644.
|
[24] |
郝秀珍, 周东美, 薛艳, 等. 天然蒙脱石和沸石改良对黑麦草在铜尾矿砂上生长的影响[J]. 土壤学报, 2005(3): 434 − 439. doi: 10.3321/j.issn:0564-3929.2005.03.013
|
[25] |
孙约兵, 徐应明, 史新, 等. 海泡石对镉污染红壤的钝化修复效应研究[J]. 环境科学学报, 2012, 32(6): 1465 − 1472. doi: 10.13671/j.hjkxxb.2012.06.030
|
[26] |
YUAN G, WADA S I. Allophane and Imogolite Nanoparticles in Soil and Their Environmental Applications[J/OL]. (2012-2)[2021-12-15]. https://www.researchgate.net/publication/285808194_Allophane_and_Imogolite_Nanoparticles_in_Soil_and_Their_Environmental_Applications.
|
[27] |
何宏平, 郭九皋, 朱建喜, 等. 蒙脱石、高岭石、伊利石对重金属离子吸附容量的实验研究[J]. 岩石矿物学杂志, 2001, 20(4): 573 − 578. doi: 10.3969/j.issn.1000-6524.2001.04.043
|
[28] |
TILLER K G. Soil contamination issues: past, present and future, a personal perspective[M]. Springer Netherlands 1996: 1-27.
|
[29] |
李丽, 刘中, 宁阳, 等. 不同类型粘土矿物对镉吸附与解吸行为的研究[J]. 山西农业大学学报(自然科学版), 2017, 37(1): 60 − 66.
|
[30] |
SUSMITA S G, BHATTACHARYYA K G. Adsorption of heavy metals on kaolinite and montmorillonite: A review[J]. Physical Chemistry Chemical Physics:PCCP, 2012, 14(19): 6698 − 723. doi: 10.1039/c2cp40093f
|
[31] |
张会民, 徐明岗, 吕家珑, 等. pH对土壤及其组分吸附和解吸镉的影响研究进展[J]. 农业环境科学学报, 2005(S1): 320 − 324.
|
[32] |
BASTA N T, GRADWOHL R, SNETHEN K, et al. Chemical immobilization of lead, zinc, and cadmium in smelter-contaminated soils using biosolids and rock phosphate[J]. Journal of Environmental Quality, 2001, 30(4): 1222 − 30. doi: 10.2134/jeq2001.3041222x
|
[33] |
梁媛, 王晓春, 曹心德. 基于磷酸盐、碳酸盐和硅酸盐材料化学钝化修复重金属污染土壤的研究进展[J]. 环境化学, 2012, 31(1): 16 − 25.
|
[34] |
GONG Y Y, ZHAO D Y, WANG Q L. An overview of field-scale studies on remediation of soil contaminated with heavy metals and metalloids: Technical progress over the last decade[J]. Water Research, 2018(147): 440 − 460.
|
[35] |
王加华, 张峰, 马烈. 重金属污染土壤稳定化修复药剂研究进展[J]. 中国资源综合利用, 2016, 34(2): 49 − 52. doi: 10.3969/j.issn.1008-9500.2016.02.024
|
[36] |
BROWN S, CHRISTENSEN B, LOMBI E, et al. An inter-laboratory study to test the ability of amendments to reduce the availability of Cd, Pb, and Zn in situ[J]. Environmental Pollution, 2005, 138(1): 34 − 45. doi: 10.1016/j.envpol.2005.02.020
|
[37] |
CAO R X, MA L Q, CHEN M, et al. Phosphate-induced metal immobilization in a contaminated site[J]. Environmental Pollution, 2003, 122(1): 19 − 28. doi: 10.1016/S0269-7491(02)00283-X
|
[38] |
CHEN, WRIGHT J V, CONCA J L, et al. Effects of pH on heavy metal sorption on mineral apatite[J]. Environmental Science& Technology, 1997, 31(3): 624 − 631.
|
[39] |
KIRKHAM M B. Cadmium in plants on polluted soils: Effects of soil factors, hyperaccumulation, and amendments[J]. Geoderma, 2006, 137(1): 19 − 32.
|
[40] |
CAO X D, MA L Q, RHUE D R, et al. Mechanisms of lead, copper, and zinc retention by phosphate rock[J]. Environmental Pollution, 2004, 131(3): 435 − 444. doi: 10.1016/j.envpol.2004.03.003
|
[41] |
MIRETZKY P, CIRELLI A F. Phosphates for Pb immobilization in soils: a review[J]. Environmental Chemistry Letters, 2008, 6(3): 121 − 133. doi: 10.1007/s10311-007-0133-y
|
[42] |
JIE L, FANG Y, YUAN L, et al. Magnetic nanoferromanganese oxides modified biochar derived from pine sawdust for adsorption of tetracycline hydrochloride[J]. Environmental Science and Pollution Research, 2019, 26(6): 5892 − 5903. doi: 10.1007/s11356-018-4033-4
|
[43] |
王旌, 罗启仕, 张长波, 等. 铬污染土壤的稳定化处理及其长期稳定性研究[J]. 环境科学, 2013, 34(10): 4036 − 4041.
|
[44] |
费杨, 阎秀兰, 廖晓勇, 等. 不同水分条件下铁基氧化物对土壤砷的稳定化效应研究[J]. 环境科学学报, 2015, 35(10): 3252 − 3260.
|
[45] |
MENCH J M, VANGRONSVELD J, CLIJSTERS H, et al. In-situ metal immobilization and phytostabilization of contaminated soils[J/OL]. (2007-9)[2021-12-15]. https://www.researchgate.net/publication/278740148_In_Situ_Metal_Immobilization_and_Phytostabilization_of_Contaminated_Soil.
|
[46] |
TOURNASSAT C, CHARLET L, BOSBACH D, et al. Arsenic(III) oxidation by birnessite and precipitation of manganese(II) arsenate[J]. Environmental Science& Technology, 2002, 36(3): 493 − 500.
|
[47] |
宋玉婧. 锰氧化物修复含砷土壤效果、影响因素和机制研究[D]. 青岛: 青岛理工大学, 2018.
|
[48] |
涂玉良. 铁锰材料原位修复砷、铅污染土壤机制与工程应用研究[D]. 广州: 华南理工大学, 2020.
|
[49] |
郝旭涛, 周新涛, 陈卓, 等. 磷酸盐化学键合材料固化/稳定化重金属研究进展[J]. 硅酸盐通报, 2015, 34(8): 2208 − 2213.
|
[50] |
JOHANNES L, STEPHEN J. Biochar for Environmental Management: Science, Technology and Implementation[J]. Science and Technology; Earthscan, 2015, 25(1): 15801 − 15811(11).
|
[51] |
辛在军, 李亮, 王玺洋, 等. 土壤重金属污染修复中功能性生物炭的定向改性[J]. 环境与发展, 2020, 32(11): 46 − 47.
|
[52] |
XIA Y, YANG T, ZHU N M, et al. Enhanced adsorption of Pb(II) onto modified hydrochar: Modeling and mechanism analysis[J]. Bioresource Technology, 2019, 288: 121593. doi: 10.1016/j.biortech.2019.121593
|
[53] |
BOLAN N, KUNHIKRISHNAN A, THANGARAJAN R, et al. Remediation of heavy metal(loid)s contaminated soils-To mobilize or to immobilize[J]. Journal of Hazardous Materials, 2014, 266: 141 − 166. doi: 10.1016/j.jhazmat.2013.12.018
|
[54] |
ZHONG D, JIANG Y, ZHAO Z, et al. pH dependence of arsenic oxidation by rice-husk-derived biochar: roles of redox-active moieties[J]. Environmental Science & Technology, 2019, 53(15): 9034 − 9044.
|
[55] |
KUMAR S, LOGANATHAN V A, GUPTA R B, et al. An assessment of U(VI) removal from groundwater using biochar produced from hydrothermal carbonization[J]. Journal of Environmental Management, 2011, 92(10): 2504 − 2512. doi: 10.1016/j.jenvman.2011.05.013
|
[56] |
WANG L W, YONG S O, DANIEL C W T, et al. New trends in biochar pyrolysis and modification strategies: feedstock, pyrolysis conditions, sustainability concerns and implications for soil amendment[J]. Soil Use and Management, 2020, 36(3): 358 − 38. doi: 10.1111/sum.12592
|
[57] |
刘振刚, 夏宇, 孟芋含, 等. 生物质炭材料修复重金属污染土壤的研究进展: 修复机理及研究热点分析[J]. 环境工程学报, 2021, 15(4): 1140 − 1148. doi: 10.12030/j.cjee.202012051
|
[58] |
O’CONNOR D, PENG T Y, ZHANG J L, et al. Biochar application for the remediation of heavy metal polluted land: A review of in situ field trials[J]. Science of the Total Environment, 2018, 619-620: 815 − 826. doi: 10.1016/j.scitotenv.2017.11.132
|
[59] |
余锦涛, 倪晓芳, 张长波. 重金属污染场地固化/稳定化修复技术研究及工程实践[J]. 工业技术创新, 2016, 3(4): 613 − 616.
|
[60] |
吕浩阳, 费杨, 王爱勤, 等. 甘肃白银东大沟铅锌镉复合污染场地水泥固化稳定化原位修复[J]. 环境科学, 2017, 38(9): 3897 − 3906.
|
[61] |
吴继业, 李天然, 闾文景. 龙湾区某场地铅污染土壤的稳定化工程应用及技术研究[J]. 环境保护与循环经济, 2020, 40(4): 14 − 18. doi: 10.3969/j.issn.1674-1021.2020.04.005
|
[62] |
刘艺芸, 陈志国, 王秀梅, 等. 蓄电池拆解区铅、镉复合污染农田土壤钝化修复[J]. 环境化学, 2021, 40(4): 1138 − 1146. doi: 10.7524/j.issn.0254-6108.2020081807
|
[63] |
何平, 曹鹏, 朱凰榕, 等. 新型改性蒙脱石材料对污染土壤中Cu的钝化修复效果[J]. 安徽农业科学, 2017, 45(16): 54 − 56. doi: 10.3969/j.issn.0517-6611.2017.16.019
|
[64] |
夏威夷. 新型羟基磷灰石基固化剂修复铅锌镉复合污染土的机理与应用研究[D]. 南京: 东南大学, 2018.
|
[65] |
刘志鹏, 李书鹏, 郭丽莉, 等. 铅污染土稳定化药剂性能的对比研究[J]. 环境工程, 2015, 33(7): 152 − 155. doi: 10.13205/j.hjgc.201507034
|
[66] |
李淑彩, 冯国杰, 孔祥斌, 等. 湖北某重金属污染土壤稳定化/固化治理工程实例[J]. 环境保护科学, 2016, 42(2): 103 − 107. doi: 10.16803/j.cnki.issn.1004-6216.2016.02.021
|
[67] |
朱湖地, 王冬冬, 李来顺, 等. 四川某铬污染场地固化、稳定化修复案例——以四川某铬污染场地为例[J]. 资源节约与环保, 2020(4): 97 − 99. doi: 10.3969/j.issn.1673-2251.2020.04.078
|
[68] |
孟祥琪, 许超, 杨远强, 等. 云南某铬渣污染场地土壤修复工程实例[J]. 环境工程学报, 2017, 11(12): 6547 − 6553. doi: 10.12030/j.cjee.201702157
|
[69] |
宋远志. 某化纤厂搬迁场地砷、多环芳烃污染土壤工程修复研究[D]. 绍兴: 绍兴文理学院, 2020.
|
[70] |
郭华, 陈振焱, 胡超, 等. 铁基生物炭对镉污染农田土壤的修复作用研究[J]. 环境科学与技术, 2020, 43(5): 195 − 202. doi: 10.19672/j.cnki.1003-6504.2020.05.027
|
[71] |
WANG F, JIN F, SHEN Z T, et al. Three-year performance of in-situ mass stabilised contaminated site soils using MgO-bearing binders[J]. Journal of Hazardous Materials, 2016, 318: 302 − 307. doi: 10.1016/j.jhazmat.2016.07.018
|
[72] |
生态环境部. 污染地块地下水修复和风险管控技术导则: HJ 25.6—2019[S/OL]. (2019-06-18)[2021-12-16]. http://www.mee.gov.cn/ywgz/fgbz/bz/bzwb/trhj/201906/W020190621398252083070.pdf.
|
[73] |
SHEN Z T, HOU D Y, XU W D, et al. Assessing long-term stability of cadmium and lead in a soil washing residue amended with MgO-based binders using quantitative accelerated ageing[J]. Science of the Total Environment, 2018, 643: 1571 − 1578. doi: 10.1016/j.scitotenv.2018.06.321
|